Previous |  Up |  Next

Article

Title: On the characterization of harmonic functions with initial data in Morrey space (English)
Author: Li, Bo
Author: Li, Jinxia
Author: Ma, Bolin
Author: Shen, Tianjun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 2
Year: 2024
Pages: 461-491
Summary lang: English
.
Category: math
.
Summary: Let $(X,d,\mu )$ be a metric measure space satisfying the doubling condition and an $L^{2}$-Poincaré inequality. Consider the nonnegative operator $\mathcal {L}$ generalized by a Dirichlet form on $X$. We will show that a solution $u$ to $(-\partial ^2_t+\mathcal {L})u=0$ on $X\times \mathbb {R}_+$ satisfies an \hbox {$\alpha $-Carleson} condition if and only if $u$ can be represented as the Poisson integral of the operator $\mathcal {L}$ with the trace in the generalized Morrey space $L^{2,\alpha }(X)$, where $\alpha $ is a nonnegative function defined on a class of balls in $X$. This result extends the analogous characterization founded by R. Jiang, J. Xiao, D. Yang (2016) from the classical Morrey space on Euclidean space to the generalized Morrey space on the metric measure space. (English)
Keyword: harmonic function
Keyword: Dirichlet problem
Keyword: Morrey space
Keyword: Carleson measure
Keyword: metric measure space
MSC: 35J25
MSC: 42B35
MSC: 43A85
DOI: 10.21136/CMJ.2024.0368-23
.
Date available: 2024-07-10T14:53:44Z
Last updated: 2024-07-15
Stable URL: http://hdl.handle.net/10338.dmlcz/152453
.
Reference: [1] Adams, D. R.: Morrey Spaces.Applied and Numerical Harmonic Analysis. Birkhäuser, Cham (2015). Zbl 1339.42001, MR 3467116, 10.1007/978-3-319-26681-7
Reference: [2] Adams, D. R., Xiao, J.: Morrey spaces in harmonic analysis.Ark. Mat. 50 (2012), 201-230. Zbl 1254.31009, MR 2961318, 10.1007/s11512-010-0134-0
Reference: [3] Akbulut, A., Guliyev, V. S., Noi, T., Sawano, Y.: Generalized Morrey spaces -- revisited.Z. Anal. Anwend. 36 (2017), 17-35. Zbl 1362.42022, MR 3638966, 10.4171/ZAA/1577
Reference: [4] Biroli, M., Mosco, U.: A Saint-Venant type principle for Dirichlet forms on discontinuous media.Ann. Mat. Pura Appl., IV. Ser. 169 (1995), 125-181. Zbl 0851.31008, MR 1378473, 10.1007/BF01759352
Reference: [5] Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces.EMS Tracts in Mathematics 17. EMS, Zürich (2011). Zbl 1231.31001, MR 2867756, 10.4171/099
Reference: [6] Campanato, S.: Proprietà di una famiglia di spazi funzionali.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 18 (1964), 137-160 Italian. Zbl 0133.06801, MR 0167862
Reference: [7] Chiarenza, F., Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function.Rend. Mat. Appl., VII. Ser. 7 (1987), 273-279. Zbl 0717.42023, MR 0985999
Reference: [8] Coulhon, T., Jiang, R., Koskela, P., Sikora, A.: Gradient estimates for heat kernels and harmonic functions.J. Funct. Anal. 278 (2020), Article ID 108398, 67 pages. Zbl 1439.53041, MR 4056992, 10.1016/j.jfa.2019.108398
Reference: [9] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis.Applied and Numerical Harmonic Analysis. Birkhäuser, Heidelberg (2013). Zbl 1268.46002, MR 3026953, 10.1007/978-3-0348-0548-3
Reference: [10] Duong, X. T., Xiao, J., Yan, L.: Old and new Morrey spaces with heat kernel bounds.J. Fourier Anal. Appl. 13 (2007), 87-111. Zbl 1133.42017, MR 2296729, 10.1007/s00041-006-6057-2
Reference: [11] Duong, X. T., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds.J. Am. Math. Soc. 18 (2005), 943-973. Zbl 1078.42013, MR 2163867, 10.1090/S0894-0347-05-00496-0
Reference: [12] Duong, X. T., Yan, L., Zhang, C.: On characterization of Poisson integrals of Schrödinger operators with BMO traces.J. Funct. Anal. 266 (2014), 2053-2085. Zbl 1292.35099, MR 3150151, 10.1016/j.jfa.2013.09.008
Reference: [13] Eriksson-Bique, S., Giovannardi, G., Korte, R., Shanmugalingam, N., Speight, G.: Regularity of solutions to the fractional Cheeger-Laplacian on domains in metric spaces of bounded geometry.J. Differ. Equations 306 (2022), 590-632. Zbl 1477.30056, MR 4337822, 10.1016/j.jde.2021.10.029
Reference: [14] Fabes, E. B., Johnson, R. L., Neri, U.: Spaces of harmonic functions representable by Poisson integrals of functions in BMO and $L_{p,\lambda}$.Indiana Univ. Math. J. 25 (1976), 159-170. Zbl 0306.46032, MR 0394172, 10.1512/iumj.1976.25.25012
Reference: [15] Fabes, E. B., Kenig, C. E., Serapioni, R. P.: The local regularity of solutions of degenerate elliptic equations.Commun. Partial Differ. Equations 7 (1982), 77-116. Zbl 0498.35042, MR 0643158, 10.1080/03605308208820218
Reference: [16] Fabes, E. B., Neri, U.: Characterization of temperatures with initial data in BMO.Duke Math. J. 42 (1975), 725-734. Zbl 0331.35032, MR 0397163, 10.1215/S0012-7094-75-04260-X
Reference: [17] Fabes, E. B., Neri, U.: Dirichlet problem in Lipschitz domains with BMO data.Proc. Am. Math. Soc. 78 (1980), 33-39. Zbl 0455.31004, MR 0548079, 10.1090/S0002-9939-1980-0548079-8
Reference: [18] Fefferman, C. L., Stein, E. M.: $H^p$ spaces of several variables.Acta Math. 129 (1972), 137-193. Zbl 0257.46078, MR 0447953, 10.1007/BF02392215
Reference: [19] Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes.de Gruyter Studies in Mathematics 19. Walter de Gruyter, Berlin (1994). Zbl 0838.31001, MR 1303354, 10.1515/9783110889741
Reference: [20] Haj{ł}asz, P.: Sobolev spaces on an arbitrary metric space.Potential Anal. 5 (1996), 403-415. Zbl 0859.46022, MR 1401074, 10.1007/BF00275475
Reference: [21] Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J. T.: Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients.New Mathematical Monographs 27. Cambridge University Press, Cambridge (2015). Zbl 1332.46001, MR 3363168, 10.1017/CBO9781316135914
Reference: [22] Huang, J., Li, P., Liu, Y.: Extension of Campanato-Sobolev type spaces associated with Schrödinger operators.Ann. Funct. Anal. 11 (2020), 314-333. Zbl 1453.46029, MR 4091418, 10.1007/s43034-019-00005-4
Reference: [23] Huang, Q., Zhang, C.: Characterization of temperatures associated to Schrödinger operators with initial data in Morrey spaces.Taiwanese J. Math. 23 (2019), 1133-1151. Zbl 1426.42020, MR 4012373, 10.11650/tjm/181106
Reference: [24] Jiang, R.: Gradient estimate for solutions to Poisson equations in metric measure spaces.J. Funct. Anal. 261 (2011), 3549-3584. Zbl 1255.58008, MR 2838034, 10.1016/j.jfa.2011.08.011
Reference: [25] Jiang, R., Li, B.: Dirichlet problem for the Schrödinger equation with the boundary value in BMO space.Sci. China, Math. 65 (2022), 1431-1468. Zbl 1497.30020, MR 4444237, 10.1007/s11425-020-1834-1
Reference: [26] Jiang, R., Lin, F.: Riesz transform under perturbations via heat kernel regularity.J. Math. Pures Appl. (9) 133 (2020), 39-65. Zbl 1433.58023, MR 4044674, 10.1016/j.matpur.2019.02.009
Reference: [27] Jiang, R., Xiao, J., Yang, D.: Towards spaces of harmonic functions with traces in square Campanato spaces and their scaling invariants.Anal. Appl., Singap. 14 (2016), 679-703. Zbl 1366.46022, MR 3530272, 10.1142/S0219530515500190
Reference: [28] Jin, Y., Li, B., Shen, T.: Harmonic functions with BMO traces and their limiting behaviors on metric measure spaces.Bull. Malays. Math. Sci. Soc. (2) 47 (2024), Paper No. 12, 33 pages. Zbl 7785602, MR 4670561, 10.1007/s40840-023-01603-1
Reference: [29] Kalita, E. A.: Dual Morrey spaces.Dokl. Math. 58 (1998), 85-87 translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 361 1998 447-449. Zbl 1011.46032, MR 1693091
Reference: [30] Keith, S., Zhong, X.: The Poincaré inequality is an open ended condition.Ann. Math. (2) 167 (2008), 575-599. Zbl 1180.46025, MR 2415381, 10.4007/annals.2008.167.575
Reference: [31] Koskela, P., Yang, D., Zhou, Y.: A characterization of Haj{ł}asz-Sobolev and Triebel- Lizorkin spaces via grand Littlewood-Paley functions.J. Funct. Anal. 258 (2010), 2637-2661. Zbl 1195.46034, MR 2593336, 10.1016/j.jfa.2009.11.004
Reference: [32] Koskela, P., Yang, D., Zhou, Y.: Pointwise characterizations of Besov and Triebel-Lizorkin spaces and quasiconformal mappings.Adv. Math. 226 (2011), 3579-3621. Zbl 1217.46019, MR 2764899, 10.1016/j.aim.2010.10.020
Reference: [33] Li, B., Li, J., Lin, Q., Ma, B., Shen, T.: A revisit to ``On BMO and Carleson measures on Riemannian manifolds''.(to appear) in Proc. R. Soc. Edinb., Sect. A, Math. 10.1017/prm.2023.58
Reference: [34] Li, B., Ma, B., Shen, T., Wu, X., Zhang, C.: On the caloric functions with BMO traces and their limiting behaviors.J. Geom. Anal. 33 (2023), Article ID 215, 42 pages. Zbl 1514.35255, MR 4581154, 10.1007/s12220-023-01245-6
Reference: [35] Li, B., Shen, T., Tan, J., Wang, A.: On the Dirichlet problem for the Schrödinger equation in the upper half-space.Anal. Math. Phys. 13 (2023), Article ID 85, 31 pages. Zbl 07768300, MR 4654920, 10.1007/s13324-023-00834-6
Reference: [36] Li, H-Q.: Estimations $L^p$ des opérateurs de Schrödinger sur les groupes nilpotents.J. Funct. Anal. 161 (1999), 152-218 French. Zbl 0929.22005, MR 1670222, 10.1006/jfan.1998.3347
Reference: [37] Lin, C.-C., Liu, H.: $BMO_L(\Bbb{H}^n)$ spaces and Carleson measures for Schrödinger operators.Adv. Math. 228 (2011), 1631-1688. Zbl 1235.22012, MR 2824565, 10.1016/j.aim.2011.06.024
Reference: [38] Liu, Y., Yuan, W.: Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces.Czech. Math. J. 67 (2017), 715-732. Zbl 1464.46020, MR 3697911, 10.21136/CMJ.2017.0081-16
Reference: [39] Martell, J. M., Mitrea, D., Mitrea, I., Mitrea, M.: The BMO-Dirichlet problem for elliptic systems in the upper half-space and quantitative characterizations of VMO.Anal. PDE 12 (2019), 605-720. Zbl 1408.35029, MR 3864207, 10.2140/apde.2019.12.605
Reference: [40] Mizuhara, T.: Boundedness of some classical operators on generalized Morrey spaces.Harmonic Analysis ICM-90 Satellite Conference Proceedings. Springer, Tokyo (1991), 183-189. Zbl 0771.42007, MR 1261439, 10.1007/978-4-431-68168-7_16
Reference: [41] C. B. Morrey, Jr.: Multiple integral problems in the calculus of variations and related topics.Univ. California Publ. Math. (N.S.) 1 (1943), 1-130. Zbl 0063.04107, MR 0011537
Reference: [42] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function.Trans. Am. Math. Soc. 165 (1972), 207-226. Zbl 0236.26016, MR 0293384, 10.1090/S0002-9947-1972-0293384-6
Reference: [43] Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces.Math. Nachr. 166 (1994), 95-103. Zbl 0837.42008, MR 1273325, 10.1002/mana.19941660108
Reference: [44] Nakai, E.: The Campanato, Morrey and Hölder spaces on spaces of homogeneous type.Stud. Math. 176 (2006), 1-19. Zbl 1121.46031, MR 2263959, 10.4064/sm176-1-1
Reference: [45] Nakai, E.: Singular and fractional integral operators on preduals of Campanato spaces with variable growth condition.Sci. China, Math. 60 (2017), 2219-2240. Zbl 1395.42054, MR 3714573, 10.1007/s11425-017-9154-y
Reference: [46] Peetre, J.: On the theory of $\mathcal{L}_{p,\lambda}$ spaces.J. Funct. Anal. 4 (1969), 71-87. Zbl 0175.42602, MR 0241965, 10.1016/0022-1236(69)90022-6
Reference: [47] Shen, Z.: Boundary value problems in Morrey spaces for elliptic systems on Lipschitz domains.Am. J. Math. 125 (2003), 1079-1115. Zbl 1046.35029, MR 2004429, 10.1353/ajm.2003.0035
Reference: [48] Song, L., Tian, X. X., Yan, L. X.: On characterization of Poisson integrals of Schrödinger operators with Morrey traces.Acta Math. Sin., Engl. Ser. 34 (2018), 787-800. Zbl 1388.42073, MR 3773821, 10.1007/s10114-018-7368-3
Reference: [49] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces.Princeton Mathematical Series 32. Princeton University Press, Princeton (1971). Zbl 0232.42007, MR 0304972
Reference: [50] Sturm, K. T.: Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality.J. Math. Pures Appl., IX. Sér. 75 (1996), 273-297. Zbl 0854.35016, MR 1387522
Reference: [51] Wang, D.: Notes on commutator on the variable exponent Lebesgue spaces.Czech. Math. J. 69 (2019), 1029-1037. Zbl 1513.42067, MR 4039617, 10.21136/CMJ.2019.0590-17
Reference: [52] Wang, Y., Xiao, J.: Homogeneous Campanato-Sobolev classes.Appl. Comput. Harmon. Anal. 39 (2015), 214-247. Zbl 1320.31016, MR 3352014, 10.1016/j.acha.2014.09.002
Reference: [53] Yan, L., Yang, D.: New Sobolev spaces via generalized Poincaré inequalities on metric measure spaces.Math. Z. 255 (2007), 133-159. Zbl 1143.42026, MR 2262725, 10.1007/s00209-006-0017-z
Reference: [54] Yang, D., Yang, D., Zhou, Y.: Localized Morrey-Campanato spaces on metric measure spaces and applications to Schrödinger operators.Nagoya Math. J. 198 (2010), 77-119. Zbl 1214.46019, MR 2666578, 10.1215/00277630-2009-008
Reference: [55] Yang, M., Zhang, C.: Characterization of temperatures associated to Schrödinger operators with initial data in BMO spaces.Math. Nachr. 294 (2021), 2021-2044. Zbl 07750816, MR 4371281, 10.1002/mana.201900213
Reference: [56] Yuan, W., Sickel, W., Yang, D.: Interpolation of Morrey-Campanato and related smoothness spaces.Sci. China, Math. 58 (2015), 1835-1908. Zbl 1337.46030, MR 3383989, 10.1007/s11425-015-5047-8
Reference: [57] Zorko, C. T.: Morrey space.Proc. Am. Math. Soc. 98 (1986), 586-592. Zbl 0612.43003, MR 0861756, 10.1090/S0002-9939-1986-0861756-X
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo