Title: | Bilinear fractional Hardy-type operators with rough kernels on central Morrey spaces with variable exponents (English) |
Author: | Wang, Hongbin |
Author: | Niu, Chenchen |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 74 |
Issue: | 2 |
Year: | 2024 |
Pages: | 493-514 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We introduce a type of $n$-dimensional bilinear fractional Hardy-type operators with rough kernels and prove the boundedness of these operators and their commutators on central Morrey spaces with variable exponents. Furthermore, the similar definitions and results of multilinear fractional Hardy-type operators with rough kernels are obtained. (English) |
Keyword: | bilinear fractional Hardy operator |
Keyword: | rough kernel |
Keyword: | central Morrey space |
Keyword: | variable exponent |
MSC: | 42B20 |
MSC: | 42B35 |
DOI: | 10.21136/CMJ.2024.0431-23 |
. | |
Date available: | 2024-07-10T14:54:24Z |
Last updated: | 2024-07-15 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152454 |
. | |
Reference: | [1] Alvarez, J., Lakey, J., Guzmán-Partida, M.: Spaces of bounded $\lambda$-central mean oscillation, Morrey spaces, and $\lambda$-central Carleson measures.Collect. Math. 51 (2000), 1-47. Zbl 0948.42013, MR 1757848 |
Reference: | [2] Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable $L^p$ spaces.Rev. Mat. Iberoam. 23 (2007), 743-770. Zbl 1213.42063, MR 2414490, 10.4171/RMI/511 |
Reference: | [3] Christ, M., Grafakos, L.: Best constants for two nonconvolution inequalities.Proc. Am. Math. Soc. 123 (1995), 1687-1693. Zbl 0830.42009, MR 1239796, 10.1090/S0002-9939-1995-1239796-6 |
Reference: | [4] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: The maximal function on variable $L^p$ spaces.Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. Zbl 1037.42023, MR 1976842 |
Reference: | [5] Cruz-Uribe, D., Wang, D.: Variable Hardy spaces.Indiana Univ. Math. J. 63 (2014), 447-493. Zbl 1311.42053, MR 3233216, 10.1512/iumj.2014.63.5232 |
Reference: | [6] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017. Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8 |
Reference: | [7] Fu, Z. W., Gong, S. L., Lu, S. Z., Yuan, W.: Weighted multilinear Hardy operators and commutators.Forum Math. 27 (2015), 2825-2851. Zbl 1331.42016, MR 3393380, 10.1515/forum-2013-0064 |
Reference: | [8] Fu, Z., Lin, Y.: $\lambda$-central BMO estimates for commutators of higher dimensional fractional Hardy operators.Acta Math. Sin., Chin. Ser. 53 (2010), 925-932 Chinese. Zbl 1240.42040, MR 2722928, 10.12386/A2010sxxb0103 |
Reference: | [9] Fu, Z., Liu, Z., Lu, S., Wang, H.: Characterization for commutators of $n$-dimensional fractional Hardy operators.Sci. China, Ser. A 50 (2007), 1418-1426. Zbl 1131.42012, MR 2390459, 10.1007/s11425-007-0094-4 |
Reference: | [10] Fu, Z., Lu, S., Shi, S.: Two characterizations of central BMO space via the commutators of Hardy operators.Forum Math. 33 (2021), 505-529. Zbl 1491.42035, MR 4223073, 10.1515/forum-2020-0243 |
Reference: | [11] Fu, Z., Lu, S., Wang, H., Wang, L.: Singular integral operators with rough kernels on central Morrey spaces with variable exponent.Ann. Acad. Sci. Fenn., Math. 44 (2019), 505-522. Zbl 1412.42059, MR 3919152, 10.5186/aasfm.2019.4431 |
Reference: | [12] Fu, Z., Lu, S., Zhao, F.: Commutators of $n$-dimensional rough Hardy operators.Sci. China, Math. 54 (2011), 95-104. Zbl 1226.47050, MR 2764788, 10.1007/s11425-010-4110-8 |
Reference: | [13] Hardy, G. H.: Note on a theorem of Hilbert.Math. Z. 6 (1920), 314-317 \99999JFM99999 47.0207.01. MR 1544414, 10.1007/BF01199965 |
Reference: | [14] Harjulehto, P., Hästö, P., Lê, Ú. V., Nuortio, M.: Overview of differential equations with non-standard growth.Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 4551-4574. Zbl 1188.35072, MR 2639204, 10.1016/j.na.2010.02.033 |
Reference: | [15] Ho, K.-P.: Hardy's inequality on Hardy-Morrey spaces with variable exponents.Mediterr. J. Math. 14 (2017), Article ID 79, 19 pages. Zbl 1367.26034, MR 3620157, 10.1007/s00009-016-0811-8 |
Reference: | [16] Hussain, A., Asim, M., Jarad, F.: Variable $\lambda$-central Morrey space estimates for the fractional Hardy operators and commutators.J. Math. 2022 (2022), Article ID 5855068, 12 pages. MR 4425886, 10.1155/2022/5855068 |
Reference: | [17] Izuki, M.: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization.Anal. Math. 36 (2010), 33-50. Zbl 1224.42025, MR 2606575, 10.1007/s10476-010-0102-8 |
Reference: | [18] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592-618. Zbl 0784.46029, MR 1134951, 10.21136/CMJ.1991.102493 |
Reference: | [19] Mizuta, Y., Nekvinda, A., Shimomura, T.: Optimal estimates for the fractional Hardy operator.Stud. Math. 227 (2015), 1-19. Zbl 1328.47049, MR 3359954, 10.4064/sm227-1-1 |
Reference: | [20] Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's theorem for non-homogeneous central Morrey spaces of variable exponent.Hokkaido Math. J. 44 (2015), 185-201. Zbl 1334.31004, MR 3532106, 10.14492/hokmj/1470053290 |
Reference: | [21] Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces.J. Funct. Anal. 262 (2012), 3665-3748. Zbl 1244.42012, MR 2899976, 10.1016/j.jfa.2012.01.004 |
Reference: | [22] Orlicz, W.: Über konjugierte Exponentenfolgen.Stud. Math. 3 (1931), 200-212 German. Zbl 0003.25203, 10.4064/sm-3-1-200-211 |
Reference: | [23] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory.Lecture Notes in Mathematics 1748. Springer, Berlin (2000). Zbl 0962.76001, MR 1810360, 10.1007/BFb0104029 |
Reference: | [24] Shi, S., Fu, Z., Lu, S.: On the compactness of commutators of Hardy operators.Pac. J. Math. 307 (2020), 239-256. Zbl 1445.42015, MR 4131808, 10.2140/pjm.2020.307.239 |
Reference: | [25] Shi, S., Lu, S.: Characterization of the central Campanato space via the commutator operator of Hardy type.J. Math. Anal. Appl. 429 (2015), 713-732. Zbl 1317.42022, MR 3342488, 10.1016/j.jmaa.2015.03.083 |
Reference: | [26] Tan, J., Liu, Z.: Some boundedness of homogeneous fractional integrals on variable exponent function spaces.Acta Math. Sin., Chin. Ser. 58 (2015), 309-320 Chinese. Zbl 1340.42055, MR 3408398, 10.12386/A2015sxxb0030 |
Reference: | [27] Tan, J., Liu, Z., Zhao, J.: On some multilinear commutators in variable Lebesgue spaces.J. Math. Inequal. 11 (2017), 715-734. Zbl 1375.42033, MR 3732810, 10.7153/jmi-2017-11-57 |
Reference: | [28] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis.Pure and Applied Mathematics 123. Academic Press, New York (1986). Zbl 0621.42001, MR 0869816 |
Reference: | [29] Wang, H.: Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent.Czech. Math. J. 66 (2016), 251-269. Zbl 1413.42029, MR 3483237, 10.1007/s10587-016-0254-1 |
Reference: | [30] Wang, H.: The continuity of commutators on Herz-type Hardy spaces with variable exponent.Kyoto J. Math. 56 (2016), 559-573. Zbl 1348.42014, MR 3542775, 10.1215/21562261-3600175 |
Reference: | [31] Wang, H.: Commutators of singular integral operator on Herz-type Hardy spaces with variable exponent.J. Korean Math. Soc. 54 (2017), 713-732. Zbl 1366.42018, MR 3640903, 10.4134/JKMS.j150771 |
Reference: | [32] Wang, H., Fu, Z.: Estimates of commutators on Herz-type spaces with variable exponent and applications.Banach J. Math. Anal. 15 (2021), Article ID 36, 27 pages. Zbl 1470.42027, MR 4216372, 10.1007/s43037-021-00120-2 |
Reference: | [33] Wang, H., Liao, F.: Boundedness of singular integral operators on Herz-Morrey spaces with variable exponent.Chin. Ann. Math., Ser. B 41 (2020), 99-116. Zbl 1431.42031, MR 4036493, 10.1007/s11401-019-0188-7 |
Reference: | [34] Wang, H., Liu, Z.: Boundedness of singular integral operators on weak Herz type spaces with variable exponent.Ann. Funct. Anal. 11 (2020), 1108-1125. Zbl 1446.42036, MR 4133617, 10.1007/s43034-020-00075-9 |
Reference: | [35] Wang, H., Xu, J.: Multilinear fractional integral operators on central Morrey spaces with variable exponent.J. Inequal. Appl. 2019 (2019), Article ID 311, 23 pages. Zbl 1499.42116, MR 4062057, 10.1186/s13660-019-2264-7 |
Reference: | [36] Wang, H., Xu, J., Tan, J.: Boundedness of multilinear singular integrals on central Morrey spaces with variable exponents.Front. Math. China 15 (2020), 1011-1034. Zbl 1472.42024, MR 4173409, 10.1007/s11464-020-0864-7 |
Reference: | [37] Wang, L.: Multilinear Calderón-Zygmund operators and their commutators on central Morrey spaces with variable exponent.Bull. Korean Math. Soc. 57 (2020), 1427-1449. Zbl 1462.42026, MR 4180187, 10.4134/BKMS.b191108 |
Reference: | [38] Wu, Q. Y., Fu, Z. W.: Weighted $p$-adic Hardy operators and their commutators on $p$-adic central Morrey spaces.Bull. Malays. Math. Sci. Soc. (2) 40 (2017), 635-654. Zbl 1407.42009, MR 3620272, 10.1007/s40840-017-0444-5 |
Reference: | [39] Xu, J.: Variable Besov and Triebel-Lizorkin spaces.Ann. Acad. Sci. Fenn., Math. 33 (2008), 511-522. Zbl 1160.46025, MR 2431378 |
Reference: | [40] Yang, D., Yuan, W., Zhuo, C.: Triebel-Lizorkin type spaces with variable exponents.Banach J. Math. Anal. 9 (2015), 146-202. Zbl 1339.46040, MR 3336888, 10.15352/bjma/09-4-9 |
Reference: | [41] Yang, D., Zhuo, C., Yuan, W.: Besov-type spaces with variable smoothness and integrability.J. Funct. Anal. 269 (2015), 1840-1898. Zbl 1342.46038, MR 3373435, 10.1016/j.jfa.2015.05.016 |
Reference: | [42] Zhao, F., Fu, Z., Lu, S.: $M_p$ weights for bilinear Hardy operators on $\Bbb{R}^n$.Collect. Math. 65 (2014), 87-102. Zbl 1305.26042, MR 3147771, 10.1007/s13348-013-0083-6 |
. |
Fulltext not available (moving wall 24 months)