Previous |  Up |  Next

Article

Title: Complete solutions of a Lebesgue-Ramanujan-Nagell type equation (English)
Author: Baruah, Priyanka
Author: Das, Anup
Author: Hoque, Azizul
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 60
Issue: 3
Year: 2024
Pages: 135-144
Summary lang: English
.
Category: math
.
Summary: We consider the Lebesgue-Ramanujan-Nagell type equation $x^2+5^a13^b17^c=2^m y^n$, where $a,b,c, m\ge 0, n \ge 3$ and $x, y\ge 1$ are unknown integers with $\gcd (x,y)=1$. We determine all integer solutions to the above equation. The proof depends on the classical results of Bilu, Hanrot and Voutier on primitive divisors in Lehmer sequences, and finding all $S$-integral points on a class of elliptic curves. (English)
Keyword: Diophantine equation
Keyword: Lehmer sequence
Keyword: elliptic curve
Keyword: quartic curve
Keyword: S-integral points
MSC: 11D41
MSC: 11D61
MSC: 11Y50
DOI: 10.5817/AM2024-3-135
.
Date available: 2024-08-02T08:32:57Z
Last updated: 2024-08-02
Stable URL: http://hdl.handle.net/10338.dmlcz/152521
.
Reference: [1] Abu Muriefah, F.S., Arif, S.A.: The Diophantine equation $x^2 + 5^{2k+1} = y^n$.Indian J. Pure Appl. Math. 30 (3) (1999), 229–231. MR 1686079
Reference: [2] Abu Muriefah, F.S., Luca, F., Siksek, S., Tengely, S.: On the Diophantine equation $x^2 + C = 2y^n$.Int. J. Number Theory 5 (6) (2009), 1117–1128. MR 2569748, 10.1142/S1793042109002572
Reference: [3] Abu Muriefah, F.S., Luca, F., Togbé, A.: On the Diophantine equation $x^2 + 5^a 13^b = y^n$.Glasgow Math. J. 50 (1) (2008), 175–181. MR 2381741, 10.1017/S0017089507004028
Reference: [4] Alan, M., Zengin, U.: On the Diophantine equation $x^2 + 3^a41^b = y^n$.Period. Math. Hungar. 81 (2020), 284–291. MR 4169906, 10.1007/s10998-020-00321-6
Reference: [5] Arif, S.A., Al-Ali, A.S.: On the Diophantine equation $ax^2+b^m=4y^n$.Acta Arith. 103 (4) (2002), 343–346. MR 1904929, 10.4064/aa103-4-4
Reference: [6] Bhatter, S., Hoque, A., Sharma, R.: On the solutions of a Lebesgue-Nagell type equation.Acta Math. Hungar. 158 (2019), 17–26. MR 3950195, 10.1007/s10474-018-00901-6
Reference: [7] Bilu, Y., Hanrot, G., Voutier, P.M.: Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte).J. Reine Angew. Math. 539 (2001), 75–122. Zbl 0995.11010, MR 1863855
Reference: [8] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language.J. Symbolic Comput. 24 (3) (1997), 235–265. Zbl 0898.68039, MR 1484478, 10.1006/jsco.1996.0125
Reference: [9] Bugeaud, Y.: On some exponential Diophantine equations.Monatsh. Math. 132 (2001), 93–97. MR 1838399, 10.1007/s006050170046
Reference: [10] Chakraborty, K., Hoque, A.: On the Diophantine equation $dx^2+p^{2a}q^{2b}=4y^p$.Results Math. 77 (1) (2022), 11 pp., article no. 18. MR 4344843
Reference: [11] Chakraborty, K., Hoque, A., Sharma, R.: Complete solutions of certain Lebesgue-Ramanujan-Nagell equations.Publ. Math. Debrecen 97 (3/4) (2020), 339–352. MR 4194065, 10.5486/PMD.2020.8752
Reference: [12] Chakraborty, K., Hoque, A., Sharma, R.: On the solutions of certain Lebesgue-Ramanujan-Nagell equations.Rocky Mountain J. Math. 51 (2) (2021), 459–471. MR 4278721, 10.1216/rmj.2021.51.459
Reference: [13] Chakraborty, K., Hoque, A., Srinivas, K.: On the Diophantine equation $cx^2+p^{2m}=4y^n$.Results Math. 76 (2021), 12 pp., article no. 57. MR 4228926, 10.1007/s00025-021-01366-w
Reference: [14] Cohn, J.H.E.: Square Fibonacci numbers, etc..Fibonacci Quart. 2 (2) (1964), 109–113. MR 0161819
Reference: [15] Dabrowski, A.: On the Lebesgue-Nagell equation.Colloq. Math. 125 (2) (2011), 245–253. MR 2871317, 10.4064/cm125-2-9
Reference: [16] Dabrowski, A., Günhan, N., Soydan, G.: On a class of Lebesgue-Ljunggren-Nagell type equations.J. Number Theory 215 (2020), 149–159. MR 4125908, 10.1016/j.jnt.2019.12.020
Reference: [17] Demirci, M.: On the Diophantine equation $x^2 + 5^a p^b = y^n$.Filomat 31 (16) (2017), 5263–5269. MR 3733500
Reference: [18] Gou, S., Wang, T.T.: The Diophantine equation $x^2 + 2^a.17^b = y^n$.Czechoslovak Math. J. 62 (2012), 645–654. MR 2984625
Reference: [19] Hoque, A.: On a class of Lebesgue-Ramanujan-Nagell equation.Period. Math. Hungar. (2023), https://doi.org/10.1007/s10998-023-00564-z. MR 4751334, 10.1007/s10998-023-00564-z
Reference: [20] Le, M., Soydan, G.: A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation.Surv. Math. Appl. 15 (2020), 473–523. MR 4118124
Reference: [21] Lebesgue, V.A.: Sur l’impossibilité, en nombres entiers, de l’équation $x^m =y^2+1$.Nouvelles Annales des Math. 9 (1850), 178 pp.
Reference: [22] Ljunggren, W.: On the Diophantine equation $Cx^2 + D = 2y^n$.Math. Scand. 18 (1966), 69–86. MR 0204358, 10.7146/math.scand.a-10781
Reference: [23] Luca, F., Togbé, A.: On the equation $x^2 + 2^\alpha 13^\beta = y^n$.Colloq. Math. 116 (1) (2009), 139–146. MR 2504836
Reference: [24] Pink, I., Rábai, Z.: On the Diophantine equation $x^2 + 5^k17^l = y^n$.Commun. Math. 19 (2011), 1–9. MR 2855388
Reference: [25] Tao, L.: On the Diophantine equation $x^2 + 5^m = y^n$.Ramanujan J. 19 (2009), 325–338. MR 2529713
Reference: [26] Yuan, P.: On the Diophantine equation $ax^2 + by^2 = ck^n$.Indag. Math. (N.S.) 16 (2) (2005), 301–320. MR 2319301
Reference: [27] Zhu, H., Le, M., Soydan, G., Togbé, A.: On the exponential Diophantine equation $x +2^a p^b = y^n$.Period. Math. Hungar. 70 (2015), 233–247. MR 3344003
.

Files

Files Size Format View
ArchMathRetro_060-2024-3_2.pdf 535.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo