Previous |  Up |  Next

Article

Title: On manifolds homotopy equivalent to the total spaces of $S^7$-bundles over $S^8$ (English)
Author: Raj, Ajay
Author: Macko, Tibor
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 60
Issue: 3
Year: 2024
Pages: 125-134
Summary lang: English
.
Category: math
.
Summary: We calculate the structure sets in the sense of surgery theory of total spaces of bundles over eight-dimensional sphere with fibre a seven-dimensional sphere, in which manifolds homotopy equivalent to the total spaces are organized, and we investigate the question, which of the elements in these structure sets can be realized as such bundles. (English)
Keyword: vector bundle
Keyword: sphere bundle over sphere
Keyword: microbundle
Keyword: homotopy equivalence
Keyword: homeomorphism
Keyword: surgery
Keyword: characteristic class
MSC: 19J25
MSC: 55R25
MSC: 55R40
MSC: 57N55
DOI: 10.5817/AM2024-3-125
.
Date available: 2024-08-02T08:30:37Z
Last updated: 2024-08-02
Stable URL: http://hdl.handle.net/10338.dmlcz/152519
.
Reference: [1] Adams, J.F.: On the groups $J(X)$, $IV$.Topology 5 (1966), 21–71. MR 0198470, 10.1016/0040-9383(66)90004-8
Reference: [2] Bredon, G.E.: Topology and Geometry.Graduate Texts in Mathematics, vol. 139, Springer-Verlag Inc., New York, 1993. MR 1224675
Reference: [3] Chang, S., Weinberger, S.: A course on surgery theory.Annals of Mathematics Studies, vol. 211, Princeton University Press, 2021. MR 4207574
Reference: [4] Crowley, D., Escher, C.M.: A classification of $S^3$-bundles over $S^4$.Differential Geom. Appl. 18 (3) (2003), 363–380. MR 1975035, 10.1016/S0926-2245(03)00012-3
Reference: [5] Dold, A., Lashof, R.: Principal quasi-fibration and fibre homotopy equivalences of the bundles.Illinois J. Math. 3 (1959), 285–305. MR 0101521, 10.1215/ijm/1255455128
Reference: [6] Grey, M.: On the classification of total space of $S^7$-bundles over $S^8$.Master's thesis, Humboldt University, Berlin, 2012.
Reference: [7] Kirby, R.C., Siebenmann, L.C.: Foundational essays on topological manifolds, smoothings, and triangulations.Annals of Mathematics Studies, vol. 88, Princeton University Press, 1977. MR 0645390
Reference: [8] Kitchloo, N., Shankar, K.: On complex equivalent to $S^3$-bundles over $S^4$.Int. Math. Res. Not. IMRN 2001 (8) (2001), 381–394. MR 1827083, 10.1155/S1073792801000186
Reference: [9] Madsen, I.B., Milgram, R.J.: The Classifying Spaces For Surgery and Cobordism of Manifolds.Princeton University Press, New Jersey, 1979. MR 0548575
Reference: [10] Milnor, J.: On manifolds homeomorphic to the $7$-sphere.Ann. of Math. (2) 64 (2) (1956), 399–405. MR 0082103, 10.2307/1969983
Reference: [11] Ranicki, A.: Algebraic ${L}$-theory and topological manifolds.Cambridge University Press, 1992. MR 1211640
Reference: [12] Ranicki, A.: On The Novikov Conjecture.Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., vol. 226, Cambridge Univ. Press, Cambridge, 1995, pp. 272–337. MR 1388304
Reference: [13] Ranicki, A.: Algebraic and Geometric Surgery.Oxford Mathematical Monograph, Oxford Science Publication, 2002, ISBN 978-0198509240. MR 2061749
Reference: [14] Shimada, N.: Differentiable structures on the $15$-sphere and Pontrjagin classes of certain manifolds.Nagoya Math. J. 12 (1957), 59–69. Zbl 0145.20303, MR 0096223, 10.1017/S0027763000021942
Reference: [15] Tamura, I.: On Pontrjagin classes and homotopy types of the manifolds.J. Math. Soc. Japan 9 (2) (1957), 250–262. MR 0091475, 10.2969/jmsj/00920250
Reference: [16] Tamura, I.: Homeomorphic classification of total spaces of sphere bundles over spheres.J. Math. Soc. Japan 10 (1) (1958), 29–42. MR 0096225, 10.2969/jmsj/01010029
Reference: [17] Toda, H., Saito, Y., Yokota, I.: Notes on the generator of $\pi _{7}(SO(n))$.Mem. Coll. Sci. Univ. Kyoto 30 (1957), 227–230. MR 0091474
Reference: [18] Wall, C.T.C.: Surgery on Compact Manifolds.Mathematical Surveys and Monographs, vol. 69, AMS, 1999. MR 1687388
Reference: [19] Whitehead, G.W.: On products in homotopy groups.Ann. of Math. (2) 40 (3) (1946), 460–475. MR 0016672, 10.2307/1969085
Reference: [20] Whitehead, G.W.: A generalization of the Hopf invariant.Ann. of Math. (2) 50 (1) (1950), 192–237. MR 0041435, 10.2307/1969506
.

Files

Files Size Format View
ArchMathRetro_060-2024-3_1.pdf 493.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo