Previous |  Up |  Next

Article

Title: Maxwell-Schrödinger equations in singular electromagnetic field (English)
Author: Shi, Qihong
Author: Jia, Yaqian
Author: Yang, Jianwei
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 4
Year: 2024
Pages: 437-450
Summary lang: English
.
Category: math
.
Summary: We investigate the Cauchy problem of the one dimensional Maxwell-Schrödinger (MS) system under the Lorenz gauge condition. Different from the classical case, we consider the electromagnetic and electrostatic potentials which are growing at space infinity. More precisely, the electrostatic potential is allowed to grow linearly, while for the electromagnetic potential the growth is sublinear. Based on the energy estimates and the gauge transformation, we prove the global existence and the uniqueness of the weak solutions to this system. (English)
Keyword: MS system
Keyword: global solvability
Keyword: energy space
Keyword: Lorenz gauge
MSC: 35Q40
DOI: 10.21136/AM.2024.0180-23
.
Date available: 2024-08-27T11:16:01Z
Last updated: 2024-09-02
Stable URL: http://hdl.handle.net/10338.dmlcz/152528
.
Reference: [1] Antonelli, P., Marcati, P., Scandone, R.: Global well-posedness for the non-linear Maxwell-Schrödinger system.Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 23 (2022), 1293-1324. Zbl 1498.35412, MR 4497745, 10.2422/2036-2145.202010_033
Reference: [2] Antonelli, P., Michelangeli, A., Scandone, R.: Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials.Z. Angew. Math. Phys. 69 (2018), Article ID 46, 30 pages. Zbl 1392.35278, MR 3778934, 10.1007/s00033-018-0938-5
Reference: [3] Aoki, K., Guimard, D., Nishioka, M., Nomura, M., Iwamoto, S., Arakawa, Y.: Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity.Nature Photonics 2 (2008), 688-692. 10.1038/nphoton.2008.202
Reference: [4] Ballentine, L. E.: Quantum Mechanics: A Modern Development.World Scientific, Singapore (2014). Zbl 0997.81501, MR 1629320, 10.1142/3142
Reference: [5] Bao, W., Cai, Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator.SIAM J. Numer. Anal. 50 (2012), 492-521. Zbl 1246.35188, MR 2914273, 10.1137/11083080
Reference: [6] Bejenaru, I., Tataru, D.: Global wellposedness in the energy space for the Maxwell-Schrödinger system.Commun. Math. Phys. 288 (2009), 145-198. Zbl 1171.81006, MR 2491621, 10.1007/s00220-009-0765-9
Reference: [7] Carles, R.: Nonlinear Schrödinger equations with repulsive harmonic potential and applications.SIAM J. Math. Anal. 35 (2003), 823-843. Zbl 1054.35090, MR 2049023, 10.1137/S0036141002416936
Reference: [8] Colin, M., Watanabe, T.: Cauchy problem for the nonlinear Schrödinger equation coupled with the Maxwell equation.Ann. Henri Lebesgue 3 (2020), 67-85. Zbl 1483.35203, MR 4060851, 10.5802/ahl.27
Reference: [9] Greiner, W., Reinhardt, J.: Quantum Electrodynamics.Springer, Berlin (2003). Zbl 1092.81066, MR 1987453, 10.1007/978-3-662-05246-4
Reference: [10] Guo, Y., Nakamitsu, K., Strauss, W.: Global finite-energy solutions of the Maxwell-Schrödinger system.Commun. Math. Phys. 170 (1995), 181-196. Zbl 0830.35131, MR 1331696, 10.1007/BF02099444
Reference: [11] Hayashi, N., Ozawa, T.: Remarks on nonlinear Schrödinger equations in one space dimension.Differ. Integral Equ. 7 (1994), 453-461. Zbl 0803.35137, MR 1255899, 10.57262/die/1369330439
Reference: [12] Komech, A. I.: On quantum jumps and attractors of the Maxwell-Schrödinger equations.Ann. Math. Qué. 46 (2022), 139-159. Zbl 1498.35456, MR 4396073, 10.1007/s40316-021-00179-1
Reference: [13] Liu, Y., Wada, T.: Long range scattering for the Maxwell-Schrödinger system in the Lorenz gauge without any restriction on the size of data.J. Differ. Equations 269 (2020), 2798-2852. Zbl 1434.35214, MR 4097235, 10.1016/j.jde.2020.02.013
Reference: [14] Lourenço-Martins, H.: A brief introduction to nano-optics with fast electrons.Plasmon Coupling Physics Advances in Imaging and Electron Physics 222. Elsevier, Amsterdam (2022), 1-82. 10.1016/bs.aiep.2022.05.001
Reference: [15] Nakamitsu, K., Tsutsumi, M.: The Cauchy problem for the coupled Maxwell-Schrödinger equations.J. Math. Phys. 27 (1986), 211-216. Zbl 0606.35015, MR 0816434, 10.1063/1.527363
Reference: [16] Nakamura, M., Wada, T.: Local well-posedness for the Maxwell-Schrödinger equation.Math. Ann. 332 (2005), 565-604. Zbl 1075.35065, MR 2181763, 10.1007/s00208-005-0637-3
Reference: [17] Nakamura, M., Wada, T.: Global existence and uniqueness of solutions to the Maxwell-Schrödinger equations.Commun. Math. Phys. 276 (2007), 315-339. Zbl 1134.81020, MR 2346392, 10.1007/s00220-007-0337-9
Reference: [18] Oh, Y.-G.: Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials.J. Differ. Equations 81 (1989), 255-274. Zbl 0703.35158, MR 1016082, 10.1016/0022-0396(89)90123-X
Reference: [19] Scandone, R.: Global solutions to the nonlinear Maxwell-Schrödinger system.Harmonic Analysis and Partial Differential Equations Trends in Mathematics. Birkhäuser, Cham (2022), 91-96. MR 4696593, 10.1007/978-3-031-24311-0_6
Reference: [20] Shi, Q.: Global boundedness for the nonlinear Klein-Gordon-Schrödinger system with power nonlinearity.Differ. Integral Equ. 36 (2023), 837-858. Zbl 07729567, MR 4597865, 10.57262/die036-0910-837
Reference: [21] Shi, Q., Jia, Y., Cao, J.: Spatially singular solutions for Klein-Gordon-Schrödinger system.Appl. Math. Lett. 131 (2022), Article ID 108038, 7 pages. Zbl 1487.35193, MR 4395960, 10.1016/j.aml.2022.108038
Reference: [22] Shi, Q., Peng, C., Wang, Q.: Blowup results for the fractional Schrödinger equation without gauge invariance.Discrete Contin. Dyn. Syst., Ser. B 27 (2022), 6009-6022. Zbl 1496.35368, MR 4470533, 10.3934/dcdsb.2021304
Reference: [23] Shukla, P. K., Eliasson, B.: Nonlinear aspects of quantum plasma physics.Phys. Usp. 53 (2010), 51-76. 10.3367/UFNe.0180.201001b.0055
Reference: [24] Shukla, P. K., Eliasson, B.: Colloquium: Nonlinear collective interactions in quantum plasmas with degenerate electron fluids.Rev. Mod. Phys. 83 (2011), 885-906. 10.1103/RevModPhys.83.885
Reference: [25] M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, Y. Nakata: Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: Temperature-insensitive 10 Gb s$^{-1}$ directly modulated lasers and 40 Gb s$^{-1}$ signal-regenerative amplifiers.J. Phys. D, Appl. Phys. 38 (2005), 2126-2134. 10.1088/0022-3727/38/13/008
Reference: [26] Tsutsumi, Y.: Global existence and asymptotic behavior of solutions for the Maxwell-Schrödinger equations in three space dimensions.Commun. Math. Phys. 151 (1993), 543-576. Zbl 0766.35061, MR 1207265, 10.1007/BF02097027
Reference: [27] Tsutsumi, Y.: Global existence and uniqueness of energy solutions for the Maxwell-Schrödinger equations in one space dimension.Hokkaido Math. J. 24 (1995), 617-639. Zbl 0840.35091, MR 1357033, 10.14492/hokmj/1380892611
Reference: [28] Tsutsumi, M., Nakamitsu, K.: Global existence of solutions to the Cauchy problem for coupled Maxwell-Schrödinger equations in two space dimensions.Physical Mathematics and Nonlinear Partial Differential Equations Lecture Notes in Pure and Applied Mathematics 102. Marcel Dekker, New York (1985), 139-155. Zbl 0575.35061, MR 0826831, 10.1201/9781003072683
Reference: [29] Wada, T.: Smoothing effects for Schrödinger equations with electro-magnetic potentials and applications to the Maxwell-Schrödinger equations.J. Funct. Anal. 263 (2012), 1-24. Zbl 1251.35095, MR 2920838, 10.1016/j.jfa.2012.04.010
Reference: [30] Yajima, K.: Existence of solutions for Schrödinger evolution equations.Commun. Math. Phys. 110 (1987), 415-426. Zbl 0638.35036, MR 0891945, 10.1007/BF01212420
Reference: [31] Yajima, K.: Schrödinger evolution equations with magnetic fields.J. Anal. Math. 56 (1991), 29-76. Zbl 0739.35083, MR 1243098, 10.1007/BF02820459
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo