Previous |  Up |  Next

Article

Title: Weak solvability and numerical analysis of a class of time-fractional hemivariational inequalities with application to frictional contact problems (English)
Author: Bouallala, Mustapha
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 4
Year: 2024
Pages: 451-479
Summary lang: English
.
Category: math
.
Summary: We investigate a generalized class of fractional hemivariational inequalities involving the time-fractional aspect. The existence result is established by employing the Rothe method in conjunction with the surjectivity of multivalued pseudomonotone operators and the properties of the Clarke generalized gradient. We are also exploring a numerical approach to address the problem, utilizing both spatially semi-discrete and fully discrete finite elements, along with a discrete approximation of the fractional derivative. All these results are applied to the analysis and numerical approximations of a frictional contact model that describes the quasi-static contact between a viscoelastic body and a solid foundation. The constitutive relation is modeled using the fractional Kelvin-Voigt law. The contact and friction are described by the subdifferential boundary conditions. The variational formulation of this problem leads to a fractional hemivariational inequality. The error estimates for this problem are derived. Finally, here's a second concrete example to illustrate the application. We propose a frictional contact model that incorporates normal compliance and Coulomb friction to describe the quasi-static contact between a viscoelastic body and a solid foundation. (English)
Keyword: hemivariational inequality
Keyword: Rothe method
Keyword: Clarke subdifferential
Keyword: Caputo derivative
Keyword: fractional viscoelastic constitutive law
Keyword: contact with friction
Keyword: numerical scheme
Keyword: finite element method
Keyword: convergence analysis
Keyword: error estimation
MSC: 35L15
MSC: 35L86
MSC: 35L87
MSC: 74D10
MSC: 74Hxx
MSC: 74M10
MSC: 74S05
DOI: 10.21136/AM.2024.0190-23
.
Date available: 2024-08-27T11:17:05Z
Last updated: 2024-09-02
Stable URL: http://hdl.handle.net/10338.dmlcz/152529
.
Reference: [1] Bai, Y., Migórski, S., Zeng, S.: A class of generalized mixed variational-hemivariational inequalities. I. Existence and uniqueness results.Comput. Math. Appl. 79 (2020), 2897-2911. Zbl 1445.49014, MR 4083028, 10.1016/j.camwa.2019.12.025
Reference: [2] Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free Boundary Problems.John Wiley & Sons, Chichester (1984). Zbl 0551.49007, MR 0745619
Reference: [3] Baleanu, D., Machado, J. A. T., Luo, A. C. J.: Fractional Dynamics and Control.Springer, New York (2012). Zbl 1231.93003, MR 2905887, 10.1007/978-1-4614-0457-6
Reference: [4] Bartosz, K., Sofonea, M.: The Rothe method for variational-hemivariational inequalities with applications to contact mechanics.SIAM J. Math. Anal. 48 (2016), 861-883. Zbl 1342.49009, MR 3466201, 10.1137/151005610
Reference: [5] Benaceur, A., Ern, A., Ehrlacher, V.: A reduced basis method for parametrized variational inequalities applied to contact mechanics.Int. J. Numer. Methods Eng. 121 (2020), 1170-1197. Zbl 07843242, MR 4072510, 10.1002/nme.6261
Reference: [6] Bonfanti, A., Kaplan, J. L., Charras, G., Kabla, A.: Fractional viscoelastic models for power-law materials.Soft Matter 16 (2020), 6002-6020. 10.1039/D0SM00354A
Reference: [7] Bouallala, M., Essoufi, El-H.: A thermo-viscoelastic fractional contact problem with normal compliance and Coulomb's friction.J. Math. Phys. Anal. Geom. 17 (2021), 280-294. Zbl 1501.74056, MR 4345635, 10.15407/mag17.03.280
Reference: [8] Bouallala, M., Essoufi, El-H., Nguyen, V. T., Pang, W.: A time-fractional of a viscoelastic frictionless contact problem with normal compliance.Eur. Phys. J. Spec. Topics 232 (2023), 2549-2558. 10.1140/epjs/s11734-023-00962-x
Reference: [9] Brézis, H.: Equations et inéquations non linéaires dans les espaces vectoriels en dualité.Ann. Inst. Fourier 18 (1968), 115-175 French. Zbl 0169.18602, MR 0270222, 10.5802/aif.280
Reference: [10] Carstensen, C., Gwinner, J.: A theory of discretization for nonlinear evolution inequalities applied to parabolic Signorini problems.Ann. Mat. Pura Appl., IV. Ser. 177 (1999), 363-394. Zbl 0954.65052, MR 1747640, 10.1007/BF02505918
Reference: [11] Cen, J., Liu, Y., Nguen, V. T., Zeng, S.: Existence of solutions for fractional evolution inclusion with application to mechanical contact problems.Fractals 29 (2021), Article ID 2140036, 14 pages. Zbl 1512.34109, 10.1142/S0218348X21400363
Reference: [12] Clarke, F. H.: Optimization and Nonsmooth Analysis.Classics in Applied Mathematics 5. SIAM, Philadelphia (1990). Zbl 0696.49002, MR 1058436, 10.1137/1.9781611971309
Reference: [13] Denkowski, Z., Migórski, S., Papageorgiou, N. S.: An Introduction to Nonlinear Analysis: Applications.Kluwer Academic, Dordrecht (2003). Zbl 1054.47001, MR 2024161, 10.1007/978-1-4419-9156-0
Reference: [14] Diethelm, K., Ford, N. J., Freed, A. D.: A predictor-corrector approach for the numerical solution of fractional differential equations.Nonlinear Dyn. 29 (2002), 3-22. Zbl 1009.65049, MR 1926466, 10.1023/A:1016592219341
Reference: [15] Eck, C., Jarušek, J.: Existence results for the static contact problem with Coulomb friction.Math. Models Methods Appl. Sci. 8 (1998), 445-468. Zbl 0907.73052, MR 1624879, 10.1142/S0218202598000196
Reference: [16] Han, J., Migórski, S., Zeng, H.: Weak solvability of a fractional viscoelastic frictionless contact problem.Appl. Math. Comput. 303 (2017), 1-18. Zbl 1411.74044, MR 3607901, 10.1016/j.amc.2017.01.009
Reference: [17] Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity.AMS/IP Studies in Advanced Mathematics 30. AMS, Providence (2002). Zbl 1013.74001, MR 1935666, 10.1090/amsip/030
Reference: [18] Hung, N. V., Tam, V. M.: Error bound analysis of the $D$-gap functions for a class of elliptic variational inequalities with applications to frictional contact mechanics.Z. Angew. Math. Phys. 72 (2021), Article ID 173, 17 pages. Zbl 1518.47094, MR 4300248, 10.1007/s00033-021-01602-x
Reference: [19] Kačur, J.: Method of Rothe in Evolution Equations.Teubner-Texte zur Mathematik 80. B. G. Teubner, Leipzig (1985). Zbl 0582.65084, MR 0834176
Reference: [20] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations.North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). Zbl 1092.45003, MR 2218073, 10.1016/s0304-0208(06)x8001-5
Reference: [21] Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and their Applications.Classics in Applied Mathematics 31. SIAM, Philadelphia (2000). Zbl 0988.49003, MR 1786735, 10.1137/1.9780898719451
Reference: [22] Koeller, R. C.: Applications of fractional calculus to the theory of viscoelasticity.J. Appl. Mech. 51 (1984), 299-307. Zbl 0544.73052, MR 0747787, 10.1115/1.3167616
Reference: [23] Li, C., Cai, M.: Theory and Numerical Approximations of Fractional Integrals and Derivatives.Other Titles in Applied Mathematics 163. SIAM, Philadelphia (2020). Zbl 1483.65007, MR 4030088, 10.1137/1.9781611975888
Reference: [24] Liu, Z., Migórski, S., Ochal, A.: Homogenization of boundary hemivariational inequalities in linear elasticity.J. Math. Anal. Appl. 340 (2008), 1347-1361. Zbl 1129.74032, MR 2390934, 10.1016/j.jmaa.2007.09.050
Reference: [25] Meerschaert, M. M., Scheffler, H.-P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation.J. Comput. Phys. 211 (2006), 249-261. Zbl 1085.65080, MR 2168877, 10.1016/j.jcp.2005.05.017
Reference: [26] Metzler, R., Klafter, J.: The random walk's guide to anomalous diffusion: A fractional dynamics approach.Phys. Rep. 339 (2000), 1-77. Zbl 0984.82032, MR 1809268, 10.1016/S0370-1573(00)00070-3
Reference: [27] Migórski, S.: Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction.Appl. Anal. 84 (2005), 669-699. Zbl 1081.74036, MR 2152682, 10.1080/00036810500048129
Reference: [28] Migórski, S., Bai, Y., Zeng, S.: A class of generalized mixed variational-hemivariational inequalities. II. Applications.Nonlinear Anal., Real World Appl. 50 (2019), 633-650. Zbl 1436.35216, MR 3974776, 10.1016/j.nonrwa.2019.06.006
Reference: [29] Migórski, S., Ochal, A.: A unified approach to dynamic contact problems in viscoelasticity.J. Elasticity 83 (2006), 247-275. Zbl 1138.74375, MR 2248126, 10.1007/s10659-005-9034-0
Reference: [30] Migórski, S., Ochal, A.: Quasi-static hemivariational inequality via vanishing acceleration approach.SIAM J. Math. Anal. 41 (2009), 1415-1435. Zbl 1204.35123, MR 2540272, 10.1137/080733231
Reference: [31] Migórski, S., Ochal, A., Sofonea, M.: Weak solvability of a piezoelectric contact problem.Eur. J. Appl. Math. 20 (2009), 145-167. Zbl 1157.74030, MR 2491121, 10.1017/S0956792508007663
Reference: [32] Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems.Advances in Mechanics and Mathematics 26. Springer, Berlin (2013). Zbl 1262.49001, MR 2976197, 10.1007/978-1-4614-4232-5
Reference: [33] Migórski, S., Zeng, S.: Rothe method and numerical analysis for history-dependent hemivariational inequalities with applications to contact mechanics.Numer. Algorithms 82 (2019), 423-450. Zbl 1433.65192, MR 4003753, 10.1007/s11075-019-00667-0
Reference: [34] Nutting, P. G.: A general stress-strain-time formula.J. Franklin Inst. 235 (1943), 513-524. 10.1016/S0016-0032(43)91483-8
Reference: [35] Panagiotopoulos, D. P.: Inequality Problems in Mechanics and Applications: Convex and Nonconvex Energy Functions.Birkhäuser, Boston (1985). Zbl 0579.73014, MR 0896909, 10.1007/978-1-4612-5152-1
Reference: [36] Patel, V.: A stable class of finite difference scheme for time-fractional partial differential equation.Available at https://www.researchsquare.com/article/rs-1887890/v1 (2022), 19 pages. 10.21203/rs.3.rs-1887890/v1
Reference: [37] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications.Mathematics in Science and Engineering 198. Academic Press, San Diego (1999). Zbl 0924.34008, MR 1658022
Reference: [38] P. E. Rouse, Jr.: The theory of the linear viscoleastic properties of dilute solutions of coiling polymers.J. Chem. Phys. 21 (1953), 1272-1280. 10.1063/1.1699180
Reference: [39] Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation.Appl. Math. Comput. 218 (2012), 10861-10870. Zbl 1280.65089, MR 2942371, 10.1016/j.amc.2012.04.047
Reference: [40] Shillor, M., Sofonea, M., Telega, J. J.: Models and Analysis of Quasistatic Contact: Variational Methods.Lecture Notes in Physics 655. Springer, Berlin (2004). Zbl 1069.74001, 10.1007/b99799
Reference: [41] Sofonea, M., Matei, A.: Mathematical Models in Contact Mechanics.London Mathematical Society Lecture Note Series 398. Cambridge University Press, Cambridge (2012). Zbl 1255.49002, 10.1017/CBO9781139104166
Reference: [42] Weng, Y., Chen, T., Li, X., Huang, N.: Rothe method and numerical analysis for a new class of fractional differential hemivariational inequality with an application.Comput. Math. Appl. 98 (2021), 118-138. Zbl 1524.49023, MR 4292075, 10.1016/j.camwa.2021.07.003
Reference: [43] Yuan, L., Agrawal, O. P.: A numerical scheme for dynamic systems containing fractional derivatives.J. Vib. Acoust. 124 (2002), 321-324. 10.1115/1.1448322
Reference: [44] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/A. Linear Monotone Operators.Springer, New York (1990). Zbl 0684.47028, MR 1033497, 10.1007/978-1-4612-0985-0
Reference: [45] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B. Nonlinear Monotone Operators.Springer, New York (1990). Zbl 0684.47029, MR 1033498, 10.1007/978-1-4612-0985-0
Reference: [46] Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation.SIAM J. Sci. Comput. 35 (2013), A2976--A3000. Zbl 1292.65096, MR 3143842, 10.1137/130910865
Reference: [47] Zeng, S., Migórski, S.: Noncoercive hyperbolic variational inequalities with applications to contact mechanics.J. Math. Anal. Appl. 455 (2017), 619-637. Zbl 1433.35202, MR 3665122, 10.1016/j.jmaa.2017.05.072
Reference: [48] Zeng, S., Migórski, S.: A class of time-fractional hemivariational inequalities with application to frictional contact problem.Commun. Nonlinear Sci. Numer. Simul. 56 (2018), 34-48. Zbl 1524.35356, MR 3709812, 10.1016/j.cnsns.2017.07.016
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo