Previous |  Up |  Next

Article

Keywords:
$p$-convergent operator; disjoint $p$-convergent operator; positive Schur property of order $p$; order continuous norm; Banach lattice
Summary:
We introduce and study the disjoint weak $p$-convergent operators in Banach lattices, and we give a characterization of it in terms of sequences in the positive cones. As an application, we derive the domination and the duality properties of the class of positive disjoint weak $p$-convergent operators. Next, we examine the relationship between disjoint weak $p$-convergent operators and disjoint $p$-convergent operators. Finally, we characterize order bounded disjoint weak $p$-convergent operators in terms of sequences in Banach lattices.
References:
[1] Alikhani, M., Fakhar, M., Zafarani, J.: $p$-convergent operators and the $p$-Schur property. Anal. Math. 46 (2020), 1-12. DOI 10.1007/s10476-020-0011-4 | MR 4064575 | Zbl 1449.46021
[2] Aliprantis, C. D., Burkinshaw, O.: Positive Operators. Springer, Dordrecht (2006). DOI 10.1007/978-1-4020-5008-4 | MR 2262133 | Zbl 1098.47001
[3] Castillo, J. M. F., Sánchez, F.: Dunford-Pettis-like properties of continuous vector function spaces. Rev. Mat. Univ. Complutense Madr. 6 (1993), 43-59. MR 1245024 | Zbl 0807.46033
[4] Chen, D., Chávez-Domínguez, J. A., Li, L.: $p$-converging operators and Dunford-Pettis property of order $p$. J. Math. Anal. Appl. 461 (2018), 1053-1066. DOI 10.1016/j.jmaa.2018.01.051 | MR 3765477 | Zbl 1464.46008
[5] Dehghani, M. B., Moshtaghioun, S. M.: On the $p$-Schur property of Banach spaces. Ann. Funct. Anal. 9 (2018), 123-136. DOI 10.1215/20088752-2017-0033 | MR 3758748 | Zbl 1486.46008
[6] Diestel, J.: Sequences and Series in Banach Spaces. Graduate Texts in Mathematics 92. Springer, New York (1984). DOI 10.1007/978-1-4612-5200-9 | MR 0737004 | Zbl 0542.46007
[7] Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics 43. Cambridge University Press, Cambridge (1995). DOI 10.1017/CBO9780511526138 | MR 1342297 | Zbl 0855.47016
[8] Dodds, P. G., Fremlin, D. H.: Compact operators in Banach lattices. Isr. J. Math. 34 (1979), 287-320. DOI 10.1007/BF02760610 | MR 0570888 | Zbl 0438.47042
[9] Dunford, N., Schwartz, J. T.: Linear Operators. I. General Theory. Pure and Applied Mathematics 7. Interscience Publishers, New York (1958). MR 0117523 | Zbl 0084.10402
[10] Ghenciu, I.: The $p$-Gelfand-Phillips property in space of operators and Dunford-Pettis like sets. Acta Math. Hung. 155 (2018), 439-457. DOI 10.1007/s10474-018-0836-5 | MR 3831309 | Zbl 1413.46015
[11] Wnuk, W.: Banach lattices with the weak Dunford-Pettis property. Atti Semin. Mat. Fis. Univ. Modena 42 (1994), 227-236. MR 1282338 | Zbl 0805.46023
[12] Zeekoei, E. D., Fourie, J. H.: On $p$-convergent operators on Banach lattices. Acta Math. Sin., Engl. Ser. 34 (2018), 873-890. DOI 10.1007/s10114-017-7172-5 | MR 3785686 | Zbl 06881942
Partner of
EuDML logo