Previous |  Up |  Next

Article

Keywords:
partial fraction decomposition; polynomial; combinatorial identity; harmonic number; generalized harmonic number; complete Bell polynomial
Summary:
We present some extensions of Chu's formulas and several striking generalizations of some well-known combinatorial identities. As applications, some new identities on binomial sums, harmonic numbers, and the generalized harmonic numbers are also derived.
References:
[1] Alzer, H., Chapman, R.: On Boole's formula for factorials. Australas. J. Comb. 59 (2014), 333-336. MR 3245408 | Zbl 1296.05013
[2] Andrews, G. E.: Identities in combinatorics. I. On sorting two ordered sets. Discrete Math. 11 (1975), 97-106. DOI 10.1016/0012-365X(75)90001-1 | MR 0389609 | Zbl 0301.05006
[3] Anglani, R., Barile, M.: Two very short proofs of a combinatorial identity. Integers 5 (2005), Article ID A18, 3 pages. MR 2192237 | Zbl 1102.11013
[4] Batir, N.: On some combinatorial identities and harmonic sums. Int. J. Number Theory 13 (2017), 1695-1709. DOI 10.1142/S179304211750097X | MR 3667490 | Zbl 1376.11065
[5] Belbahri, K.: Scale invariant operators and combinatorial expansions. Adv. Appl. Math. 45 (2010), 548-563. DOI 10.1016/j.aam.2010.01.010 | MR 2679931 | Zbl 1226.05049
[6] Boole, G.: Calculus of Finite Differences. Chelsea, New York (1958). MR 0115025 | Zbl 0084.07701
[7] Choi, J.: Summation formulas involving binomial coefficients, harmonic numbers, and generalized harmonic numbers. Abst. Appl. Anal. 2014 (2014), Article ID 501906, 10 pages. DOI 10.1155/2014/501906 | MR 3246339 | Zbl 1422.11033
[8] Chu, W.: Harmonic number identities and Hermite-Padé approximations to the logarithm function. J. Approximation Theory 137 (2005), 42-56. DOI 10.1016/j.jat.2005.07.008 | MR 2179622 | Zbl 1082.41014
[9] Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions. D. Reidel, Dordrecht (1974). DOI 10.1007/978-94-010-2196-8 | MR 0460128 | Zbl 0283.05001
[10] Driver, K., Prodinger, H., Schneider, C., Weideman, J. A. C.: Padé approximations to the logarithm. II. Identities, recurrences and symbolic computation. Ramanujan J. 11 (2006), 139-158. DOI 10.1007/s11139-006-6503-4 | MR 2267670 | Zbl 1102.41015
[11] Elsner, C.: On recurrence formulae for sums involving binomial coefficients. Fibonacci Q. 43 (2005), 31-45. DOI 10.1080/00150517.2005.12428390 | MR 2129118 | Zbl 1136.40301
[12] Flajolet, P., Vepstas, L.: On differences of zeta values. J. Comput. Appl. Math. 220 (2008), 58-73. DOI 10.1016/j.cam.2007.07.040 | MR 2444154 | Zbl 1147.11046
[13] Gonzáles, L.: A new approach for proving or generating combinatorial identities. Int. J. Math. Educ. Sci. Technol. 41 (2010), 359-372. DOI 10.1080/00207390903398382 | MR 2786266 | Zbl 1292.97051
[14] Gould, H. W.: Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial Coefficient Summations. Henry W. Gould, Morgantown (1972). MR 0354401 | Zbl 0241.05011
[15] Gould, H. W.: Euler's formula for $n$th differences of powers. Am. Math. Mon. 85 (1978), 450-467. DOI 10.2307/2320064 | MR 0480057 | Zbl 0397.10055
[16] Graham, R. L., Knuth, D. E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley, Reading (1989). MR 1001562 | Zbl 0668.00003
[17] Holland, F.: A proof, a consequence and an application of Boole's combinatorial identity. Ir. Math. Soc. Bull. 89 (2022), 25-28. DOI 10.33232/BIMS.0089.25.28 | MR 4467082 | Zbl 1493.05031
[18] Ismail, M. E. H., Stanton, D.: Some combinatorial and analytical identities. Ann. Comb. 16 (2012), 755-771. DOI 10.1007/s00026-012-0158-1 | MR 3000443 | Zbl 1256.05021
[19] Karatsuba, E. A.: On a method for constructing a family of approximations of zeta constants by rational fractions. Probl. Inf. Transm. 51 (2015), 378-390. DOI 10.1134/S0032946015040079 | MR 3449580 | Zbl 1387.11094
[20] Karatsuba, E. A.: On a method of evaluation of zeta-constants based on one number theoretic approach. Available at https://arxiv.org/abs/1805.02076 (2018), 19 pages. DOI 10.48550/arXiv.1805.02076 | MR 4429764
[21] Karatsuba, E. A.: On an identity with binomial coefficients. Math. Notes 105 (2019), 145-147. DOI 10.1134/S0001434619010176 | MR 3894458 | Zbl 1416.11034
[22] Katsuura, H.: Summations involving binomial coefficients. Coll. Math. J. 40 (2009), 275-278. DOI 10.1080/07468342.2009.11922375 | MR 2548966
[23] Krantz, S. G., Parks, H. R.: A Primer of Real Analytic Functions. Birkhäuser Advances Texts. Basler Lehrbücher. Birkhäuser, Boston (2002). DOI 10.1007/978-0-8176-8134-0 | MR 1916029 | Zbl 1015.26030
[24] Krivokolesko, V. P.: Integral representations for linearly convex polyhedra and some combinatorial identities. J. Sib. Fed. Univ., Math. Phys. 2 (2009), 176-188. Zbl 07324709
[25] Mouçouf, M., Zriaa, S.: A new approach for computing the inverse of confluent Vandermonde matrices via Taylor's expansion. Linear Multilinear Algebra 70 (2022), 5973-5986. DOI 10.1080/03081087.2021.1940807 | MR 4525262 | Zbl 1510.15009
[26] Nakata, T.: Another probabilistic proof of a binomial identity. Fibonacci Q. 52 (2014), 139-140. DOI 10.1080/00150517.2014.12427904 | MR 3214377 | Zbl 1296.05016
[27] Peterson, J.: A probabilistic proof of a binomial identity. Am. Math. Mon. 120 (2013), 558-562. DOI 10.4169/amer.math.monthly.120.06.558 | MR 3063121 | Zbl 1273.05012
[28] Pohoata, C.: Boole's formula as a consequence of Lagrange's interpolating polynomial theorem. Integers 8 (2008), Article ID A23, 2 pages. MR 2425621 | Zbl 1210.05008
[29] Quaintance, J.: Combinatorial Identities for Stirling Numbers: The Unpublished Notes of H. W. Gould. World Scientific, Singapore (2015). DOI 10.1142/9821 | MR 3409093 | Zbl 1343.11002
[30] Sarmanov, O. V., Sevast'yanov, B. A., Tarakanov, V. E.: Some combinatorial identities. Math. Notes 11 (1972), 77-80. DOI 10.1007/BF01366921 | MR 0289321 | Zbl 0261.05012
[31] Sofo, A., Srivastava, H. M.: Identities for the harmonic numbers and binomial coefficients. Ramanujan. J. 25 (2011), 93-113. DOI 10.1007/s11139-010-9228-3 | MR 2787293 | Zbl 1234.11022
[32] Spivey, M. Z.: Probabilistic proofs of a binomial identity, its inverse, and generalizations. Am. Math. Mon. 123 (2016), 175-180. DOI 10.4169/amer.math.monthly.123.2.175 | MR 3470509 | Zbl 1339.05029
[33] Strehl, V.: Binomial identities -- combinatorial and algorithmic aspects. Discrete. Math. 136 (1994), 309-346. DOI 10.1016/0012-365X(94)00118-3 | MR 1313292 | Zbl 0823.33003
[34] Vellaisamy, P.: On probabilistic proofs of certain binomial identities. Am. Stat. 69 (2015), 241-243. DOI 10.1080/00031305.2015.1056381 | MR 3391644 | Zbl 07671735
[35] Weideman, J. A. C.: Padé approximations to the logarithm. I. Derivation via differential equations. Quaest. Math. 28 (2005), 375-390. DOI 10.2989/16073600509486135 | MR 2164379 | Zbl 1085.41011
[36] Wituła, R., Hetmaniok, E., S{ł}ota, D., Gawrońska, N.: Convolution identities for central binomial numbers. Int. J. Pure Appl. Math. 85 (2013), 171-178. DOI 10.12732/ijpam.v85i1.14
[37] Zhu, J.-M., Luo, Q.-M.: A novel proof of two partial fraction decompositions. Adv. Difference Equ. 2021 (2021), Article ID 274, 8 pages. DOI 10.1186/s13662-021-03433-6 | MR 4268818 | Zbl 1494.05012
Partner of
EuDML logo