Previous |  Up |  Next

Article

Keywords:
alternating group; dicyclic group; pronormal subgroup; lattice of subgroups; lower semimodular lattice
Summary:
In this paper, the structures of collection of pronormal subgroups of dicyclic, symmetric and alternating groups $G$ are studied in respect of formation of lattices ${\rm L}(G)$ and sublattices of ${\rm L}(G)$. It is proved that the collections of all pronormal subgroups of ${\rm A}_n$ and S$_n$ do not form sublattices of respective ${\rm L}({\rm A}_n)$ and ${\rm L}({\rm S}_n)$, whereas the collection of all pronormal subgroups ${\rm LPrN}({\rm Dic}_n)$ of a dicyclic group is a sublattice of ${\rm L}({\rm Dic}_n)$. Furthermore, it is shown that ${\rm L}({\rm Dic}_n)$ and ${\rm LPrN}({\rm Dic}_n$) are lower semimodular lattices.
References:
[1] Benesh, B.: A classification of certain maximal subgroups of alternating groups. Computational Group Theory and the Theory of Groups Contemporary Mathematics 470. AMS, Providence (2008), 21-26. DOI 10.1090/conm/470 | MR 2478411 | Zbl 1159.20004
[2] Călugăreanu, G.: Lattice Concepts of Module Theory. Kluwer Texts in the Mathematical Sciences 22. Kluwer, Dordrecht (2000). DOI 10.1007/978-94-015-9588-9 | MR 1782739 | Zbl 0959.06001
[3] Giovanni, F. de, Vincenzi, G.: Pronormality in infinite groups. Math. Proc. R. Ir. Acad. 100A (2000), 189-203. MR 1883103 | Zbl 0980.20020
[4] Grätzer, G.: General Lattice Theory. Academic Press, New York (1978). DOI 10.1007/978-3-0348-7633-9 | MR 0509213 | Zbl 0385.06015
[5] Hall, P.: Theorems like Sylow's. Proc. Lond. Math. Soc., III. Ser. 6 (1956), 286-304. DOI 10.1112/plms/s3-6.2.286 | MR 0077533 | Zbl 0075.23907
[6] Lazorec, M.-S., Tărnăuceanu, M.: On some probabilistic aspects of (generalized) dicyclic groups. Quaest. Math. 44 (2021), 129-146. DOI 10.2989/16073606.2019.1673498 | MR 4211983 | Zbl 1505.20064
[7] Luthar, I. S.: Algebra. Volume 1. Groups. Narosa Publishing, New Delhi (1996). Zbl 0943.20001
[8] Mann, A.: A criterion for pronormality. J. Lond. Math. Soc. 44 (1969), 175-176. DOI 10.1112/jlms/s1-44.1.175 | MR 0238954 | Zbl 0165.34003
[9] Mitkari, S., Kharat, V., Agalave, M.: On the structure of pronormal subgroups of dihedral groups. J. Indian Math. Soc. (N.S) 90 (2023), 401-410. MR 4613640 | Zbl 7742572
[10] Mitkari, S., Kharat, V., Ballal, S.: On some subgroup lattices of dihedral, alternating and symmetric groups. Discuss. Math., Gen. Algebra Appl. 43 (2023), 309-326. DOI 10.7151/dmgaa.1425 | MR 4664771 | Zbl 1538.20013
[11] Peng, T. A.: Pronormality in finite groups. J. Lond. Math. Soc., II. Ser. 3 (1971), 301-306. DOI 10.1112/jlms/s2-3.2.301 | MR 0276319 | Zbl 0209.05502
[12] Rose, J. S.: Finite soluble groups with pronormal system normalizers. Proc. Lond. Math. Soc., III. Ser. 17 (1967), 447-469. DOI 10.1112/plms/s3-17.3.447 | MR 0212092 | Zbl 0153.03602
[13] Schmidt, R.: Subgroup Lattices of Groups. de Gruyter Expositions in Mathematics 14. Walter de Gruyter, Berlin (1994). DOI 10.1515/9783110868647 | MR 1292462 | Zbl 0843.20003
[14] Stern, M.: Semimodular Lattices: Theory and Applications. Encyclopedia of Mathematics and Its Applications 73. Cambridge University Press, Cambridge (1999). DOI 10.1017/CBO9780511665578 | MR 1695504 | Zbl 0957.06008
[15] Suzuki, M.: Structure of a Group and the Structure of its Lattice of Subgroups. Springer, Heidelberg (1956). DOI 10.1007/978-3-642-52758-6 | MR 0083487 | Zbl 0070.25406
[16] Vdovin, E. P., Revin, D. O.: Pronormality and strong pronormality of subgroups. Algebra Logic 52 (2013), 15-23. DOI 10.1007/s10469-013-9215-z | MR 3113475 | Zbl 1279.20028
Partner of
EuDML logo