Previous |  Up |  Next

Article

Title: Homological dimensions for endomorphism algebras of Gorenstein projective modules (English)
Author: Zhang, Aiping
Author: Lei, Xueping
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 3
Year: 2024
Pages: 675-682
Summary lang: English
.
Category: math
.
Summary: Let $A$ be a CM-finite Artin algebra with a Gorenstein-Auslander generator $E$, $M$ be a Gorenstein projective $A$-module and $B = {\rm End}_A M$. We give an upper bound for the finitistic dimension of $B$ in terms of homological data of $M$. Furthermore, if $A$ is $n$-Gorenstein for $2 \leq n < \infty $, then we show the global dimension of $B$ is less than or equal to $n$ plus the $B$-projective dimension of ${\rm Hom}_A(M, E).$ As an application, the global dimension of ${\rm End}_A E$ is less than or equal to $n$. (English)
Keyword: finitistic dimension
Keyword: Gorenstein projective module
Keyword: endomorphism algebra
MSC: 16E10
MSC: 16G10
DOI: 10.21136/CMJ.2024.0199-23
.
Date available: 2024-10-03T12:32:49Z
Last updated: 2024-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/152574
.
Reference: [1] Auslander, M., Bridger, M.: Stable Module Theory.Memoirs of the American Mathematical Society 94. AMS, Providence (1969). Zbl 0204.36402, MR 0269685, 10.1090/memo/0094
Reference: [2] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras.Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). Zbl 0834.16001, MR 1314422, 10.1017/CBO9780511623608
Reference: [3] Avramov, L. L., Martsinkovsky, A.: Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension.Proc. Lond. Math. Soc., III. Ser. 85 (2002), 393-440. Zbl 1047.16002, MR 1912056, 10.1112/S0024611502013527
Reference: [4] Christensen, L. W.: Gorenstein Dimension.Lecture Notes in Mathematics 1747. Springer, Berlin (2000). Zbl 0965.13010, MR 1799866, 10.1007/BFb0103980
Reference: [5] Christensen, L. W., Foxby, H.-B., Frankild, A.: Restricted homological dimensions and Cohen-Macaulayness.J. Algebra 251 (2002), 479-502. Zbl 1073.13501, MR 1900297, 10.1006/jabr.2001.9115
Reference: [6] Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions -- a functorial description with applications.J. Algebra 302 (2006), 231-279. Zbl 1104.13008, MR 2236602, 10.1016/j.jalgebra.2005.12.007
Reference: [7] Dlab, V., Ringel, C. M.: Every semiprimary ring is the endomorphism ring of a projective module over a quasihereditary ring.Proc. Am. Math. Soc. 107 (1989), 1-5. Zbl 0681.16015, MR 0943793, 10.1090/S0002-9939-1989-0943793-2
Reference: [8] Enochs, E. E., Jenda, O. M. G.: On Gorenstein injective modules.Commun. Algebra 21 (1993), 3489-3501. Zbl 0783.13011, MR 1231612, 10.1080/00927879308824744
Reference: [9] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules.Math. Z. 220 (1995), 611-633. Zbl 0845.16005, MR 1363858, 10.1007/BF02572634
Reference: [10] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). Zbl 0952.13001, MR 1753146, 10.1515/9783110803662
Reference: [11] Enochs, E. E., Jenda, O. M. G., Xu, J.: Foxby duality and Gorenstein injective and projective modules.Trans. Am. Math. Soc. 348 (1996), 3223-3234. Zbl 0862.13004, MR 1355071, 10.1090/S0002-9947-96-01624-8
Reference: [12] Eshraghi, H.: Representation dimension via tilting theory.J. Algebra 494 (2018), 77-91. Zbl 1437.16006, MR 3723171, 10.1016/j.jalgebra.2017.10.003
Reference: [13] Foxby, H.-B.: Gorenstein dimensions over Cohen-Macaulay rings.Commutative Algebra Runge. Vechtaer Universitätsschriften, Cloppenburg (1994), 59-63. Zbl 0834.13014
Reference: [14] Holm, H.: Gorenstein homological dimensions.J. Pure Appl. Algebra 189 (2004), 167-193. Zbl 1050.16003, MR 2038564, 10.1016/j.jpaa.2003.11.007
Reference: [15] Huang, C., Huang, Z.: Gorenstein syzygy modules.J. Algebra 324 (2010), 3408-3419. Zbl 1216.16002, MR 2735390, 10.1016/j.jalgebra.2010.10.010
Reference: [16] Huang, Z., Sun, J.: Endomorphism algebras and Igusa-Todorov algebras.Acta Math. Hung. 140 (2013), 60-70. Zbl 1311.16006, MR 3123863, 10.1007/s10474-013-0312-1
Reference: [17] Igusa, K., Todorov, G.: On the finitistic global dimension conjecture for Artin algebras.Representations of Algebras and Related Topics Fields Institute Communications 45. AMS, Providence (2005), 201-204. Zbl 1082.16011, MR 2146250, 10.1090/fic/045
Reference: [18] Li, Z.-W., Zhang, P.: Gorenstein algebras of finite Cohen-Macaulay type.Adv. Math. 223 (2010), 728-734. Zbl 1184.16011, MR 2565547, 10.1016/j.aim.2009.09.003
Reference: [19] Psaroudakis, C.: Homological theory of recollements of abelian categories.J. Algebra 398 (2014), 63-110. Zbl 1314.18016, MR 3123754, 10.1016/j.jalgebra.2013.09.020
Reference: [20] Wei, J.: Finitistic dimension and restricted flat dimension.J. Algebra 320 (2008), 116-127. Zbl 1160.16003, MR 2417981, 10.1016/j.jalgebra.2008.03.017
Reference: [21] Xi, C.: On the finitistic dimension conjecture. III. Related to the pair $eAe \subseteq A$.J. Algebra 319 (2008), 3666-3688. Zbl 1193.16006, MR 2407846, 10.1016/j.jalgebra.2008.01.021
Reference: [22] Xu, D.: Homological dimensions and strongly idempotent ideals.J. Algebra 44 (2014), 175-189. Zbl 1330.16003, MR 3223395, 10.1016/j.jalgebra.2014.05.020
Reference: [23] Zhang, A.: Endomorphism algebras of Gorenstein projective modules.J. Algebra Appl. 17 (2018), Article ID 1850177, 6 pages. Zbl 1418.16004, MR 3846425, 10.1142/S0219498818501773
Reference: [24] Zhang, A., Zhang, S.: On the finitistic dimension conjecture of Artin algebras.J. Algebra 320 (2008), 253-258. Zbl 1176.16014, MR 2417987, 10.1016/j.jalgebra.2007.12.011
Reference: [25] Zhang, P.: Triangulated Categories and Derived Categories.Science Press, Beijing (2015), Chinese.
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo