Previous |  Up |  Next

Article

Title: A note on linear derivations (English)
Author: Patra, Amit
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 3
Year: 2024
Pages: 683-695
Summary lang: English
.
Category: math
.
Summary: At first we prove some results on a general polynomial derivation using few results of linear derivation. Then we study the ring of constants of a linear derivation for some rings. We know that any linear derivation is a nonsimple derivation. In the last section we find the smallest integer $w > 1 $ such that the polynomial ring in $n$ variables is $w$-differentially simple, all $w$ derivations are nonsimple and the $w$ derivations set contains a linear derivation. (English)
Keyword: linear derivation
Keyword: ring of constant
Keyword: Fermat ring
Keyword: Darboux polynomial
Keyword: simple derivation
MSC: 13N15
DOI: 10.21136/CMJ.2024.0249-23
.
Date available: 2024-10-03T12:33:17Z
Last updated: 2024-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/152575
.
Reference: [1] Baltazar, R.: Simplicity and commutative bases of derivations in polynomial and power series rings.ISRN Algebra 2013 (2013), Article ID 560648, 4 pages. Zbl 1291.13032, MR 3150073, 10.1155/2013/560648
Reference: [2] Coutinho, S. C., Levcovitz, D.: On the differential simplicity of affine rings.Proc. Am. Math. Soc. 142 (2014), 1701-1704. Zbl 1311.13035, MR 3168476, 10.1090/S0002-9939-2014-11652-2
Reference: [3] Ferragut, A., Gasull, A.: Seeking Darboux polynomials.Acta Appl. Math. 139 (2015), 167-186. Zbl 1365.34060, MR 3400587, 10.1007/s10440-014-9974-0
Reference: [4] Lequain, Y.: Differential simplicity and complete integral closure.Pac. J. Math. 36 (1971), 741-751. Zbl 0188.09702, MR 0284422, 10.2140/pjm.1971.36.741
Reference: [5] Nowicki, A.: Polynomial Derivations and Their Rings of Constants.Nicolaus Copernicus University Press, Toruń (1994). Zbl 1236.13023, MR 2553232
Reference: [6] Nowicki, A.: On the nonexistence of rational first integrals for systems of linear differential equations.Linear Algebra Appl. 235 (1996), 107-120. Zbl 0843.34013, MR 1374254, 10.1016/0024-3795(94)00122-7
Reference: [7] Nowicki, A., Zieliński, J.: Rational constants of monomial derivations.J. Algebra 302 (2006), 387-418. Zbl 1119.13021, MR 2236608, 10.1016/j.jalgebra.2006.02.034
Reference: [8] Veloso, M., Shestakov, I.: Rings of constants of linear derivations on Fermat rings.Commun. Algebra 46 (2018), 5469-5479. Zbl 1461.13031, MR 3923774, 10.1080/00927872.2018.1469032
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo