Previous |  Up |  Next

Article

Title: Semiholonomic jets and induced modules in Cartan geometry calculus (English)
Author: Slovák, Jan
Author: Souček, Vladimír
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 60
Issue: 4
Year: 2024
Pages: 191-219
Summary lang: English
.
Category: math
.
Summary: The famous Erlangen Programme was coined by Felix Klein in 1872 as an algebraic approach allowing to incorporate fixed symmetry groups as the core ingredient for geometric analysis, seeing the chosen symmetries as intrinsic invariance of all objects and tools. This idea was broadened essentially by Elie Cartan in the beginning of the last century, and we may consider (curved) geometries as modelled over certain (flat) Klein’s models. The aim of this short survey is to explain carefully the basic concepts and algebraic tools built over several recent decades. We focus on the direct link between the jets of sections of homogeneous bundles and the associated induced modules, allowing us to understand the overall structure of invariant linear differential operators in purely algebraic terms. This allows us to extend essential parts of the concepts and procedures to the curved cases. (English)
Keyword: Cartan connections
Keyword: BGG machinery
Keyword: tractor calculus
Keyword: induced modules
Keyword: Verma modules
Keyword: semiholonomic jets
MSC: 17B10
MSC: 17B25
MSC: 22E47
MSC: 58J60
DOI: 10.5817/AM2024-4-191
.
Date available: 2024-11-27T08:33:37Z
Last updated: 2024-11-27
Stable URL: http://hdl.handle.net/10338.dmlcz/152640
.
Reference: [1] Bailey, T.N., Eastwood, M.G., Gover, A.R.: Thomas’s structure bundle for conformal, projective and related structures.Rocky Mountain J. 24 (1994), 1191–1217. Zbl 0828.53012, MR 1322223
Reference: [2] Baston, R.J.: Verma modules and differential conformal invariants.J. Differential Geom. 32 (1990), 851–898. Zbl 0732.53011, MR 1078164, 10.4310/jdg/1214445537
Reference: [3] Boe, B.D., Collingwood, D.H.: A comparison theory for the structure of induced representations I..J. Algebra 94 (1985), 511–545. MR 0792968, 10.1016/0021-8693(85)90197-8
Reference: [4] Boe, D.D., Collingwood, D.H.: A comparison theory for the structure of induced representations II..Math. Z. 190 (1985), 1–11. MR 0793343
Reference: [5] Borho, W., Jantzen, J.C.: Über primitive Ideale in der Einhüllenden einer halbeinfachen Lie-Algebra.Invent. Math., 39 (1977), 1–53. MR 0453826, 10.1007/BF01695950
Reference: [6] Calderbank, D.M.J., Diemer, T.: Differential invariants and curved Bernstein-Gelfand-Gelfand sequences.J. Reine Angew. Math. 537 (2001), 67–103. Zbl 0985.58002, MR 1856258
Reference: [7] Čap, A., Gover, A.R.: Tractor calculi for parabolic geometries.Trans. Amer. Math. Soc. 354 (2002), 1511–1548. MR 1873017, 10.1090/S0002-9947-01-02909-9
Reference: [8] Čap, A., Slovák, J.: Bundles of Weyl structures and invariant calculus for parabolic geometries.Contemp. Math., vol. 788, American Mathematical Society, 2003, pp. 53–72. MR 4636019
Reference: [9] Čap, A., Slovák, J.: Parabolic geometries. I, Background and general theory.Mathematical Surveys and Monographs, vol. 154, Amer. Math. Soc., Providence, RI, 2009, pp. x+628. MR 2532439
Reference: [10] Čap, A., Slovák, J., Souček, V.: Bernstein–Gelfand–Gelfand sequences.Ann. of Math. 154 (2001), 97–113. MR 1847589, 10.2307/3062111
Reference: [11] Cartan, E.: Les espaces à connexion conforme.Ann. Soc. Pol. Math. 2 (1923), 171–202.
Reference: [12] Eastwood, M.G.: Variations on the de Rham complex.Notices Amer. Math. Soc. 46 (11) (1999), 1368–1376. MR 1723246
Reference: [13] Eastwood, M.G., Rice, J.W.: Conformally invariant differential operators on Minkowski space and their curved analogues.Comm. Math. Phys. 109 (1987), 207–228. Zbl 0659.53047, MR 0880414
Reference: [14] Eastwood, M.G., Rice, J.W.: Erratum: “Conformally invariant differential operators on Minkowski space and their curved analogues”.Comm. Math. Phys. 144 (1) (1992), 213. MR 1151252
Reference: [15] Eastwood, M.G., Slovák, J.: Semi-holonomic Verma modules.J. Algebra 197 (1997), 424–448. MR 1483772, 10.1006/jabr.1997.7136
Reference: [16] Enright, T., Shelton, B.: Categories of highest weight modules: Applications to classical Hermitian symmetric pairs.Mem. Amer. Math. Soc. 67 (1987), no. 367, iv+94 pp. MR 0888703
Reference: [18] Graham, C.R., Jenne, R., Mason, J., Sparling, A.J.: Conformally invariant powers of the Laplacian, I: Existence.J. London Math. Soc. 46 (1992), 557–565. Zbl 0726.53010, MR 1190438, 10.1112/jlms/s2-46.3.557
Reference: [19] Kirillov, A.A.: Invariant operators over geometric quantitie.Current problems in mathematics, vol. 16, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1980, (Russian), VINITI, 3–29. MR 0611158
Reference: [20] Kolář, I., Michor, P., Slovák, J.: Natural operations in differential geometry.Springer, 1993, 434 pp. Zbl 0782.53013, MR 1202431
Reference: [21] Kostant, B.: Verma modules and the existence of quasi invariant differential operators.Non-Commutative Harmonic Analysis, vol. LNM 466, Springer, 1975, 101–128. MR 0396853, 10.1007/BFb0082201
Reference: [22] Lepowsky, J.: A generalization of the Bernstein–Gelfand–Gelfand resolution.J. Algebra 49 (1977), 496–511. Zbl 0381.17006, MR 0476813, 10.1016/0021-8693(77)90254-X
Reference: [23] Návrat, A.: A Grassmannian Analogue of Paneitz Operator.to appear.
Reference: [24] Návrat, A.: Non-standard Operators in Almost Grassmannian Geometry.Ph.D. thesis, University of Vienna, 2012, 120 pp.
Reference: [25] Sawon, J.: Homomorphisms of semiholonomic Verma modules: an exceptional case.Acta Math. Univ. Comenian. 68 (2) (1999), 257–269. MR 1757794
Reference: [26] Sharpe, R.W.: Differential Geometry.Graduate Texts in Mathematics, vol. 166, Springer Verlag, 1997. Zbl 0876.53001, MR 1453120
Reference: [27] Slovák, J., Souček, V.: Strongly invariant differential operators on parabolic geometries modelled on $Gr(3,3)$.preprint to appear.
Reference: [28] Slovák, J., Souček, V.: First order invariant differential operators for parabolic geometries.Seminaires & Congres. France, French Math. Soc, 2000, pp. 249–273.
Reference: [29] Slovák, J., Suchánek, R.: Notes on tractor calculi.Tutor. Sch. Workshops Math. Sci., Birkhäuser/Springer, Cham, 2021, pp. 31–72. MR 4238608
Reference: [30] Tanaka, N.: On the equivalence problem associated with simple graded Lie algebras.Hokkaido Math. J. 8 (1979), 23–84. MR 0533089, 10.14492/hokmj/1381758416
Reference: [31] Vogan, D.A.: Representation of Real Reductive Lie Groups.Progress in Mathematics, vol. 15, Birkhauser, Boston, Cambridge, MA, 1981. MR 0632407
Reference: [32] Zierau, R.: Representations in Dolbeault Cohomology.Representation Theory of Lie Groups, vol. 8, American Math. Soc., J. Adams and D. Vogan ed., 2015, IAS/Park City Mathematics Series, pp. 89–146. MR 1737727
Reference: [33] Zuckerman, G.: Tensor products of finite and infinite dimensional representations of semisimple Lie groups.Ann. of Math. 106 (1977), 295–308. MR 0457636, 10.2307/1971097
.

Files

Files Size Format View
ArchMathRetro_060-2024-4_2.pdf 594.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo