Previous |  Up |  Next

Article

Title: Lie algebra structure in the model of 3-link snake robot (English)
Author: Doležal, Martin
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 60
Issue: 4
Year: 2024
Pages: 221-229
Summary lang: English
.
Category: math
.
Summary: In this paper, we study a 5 dimensional configuration space of a 3-link snake robot model moving in a plane. We will derive two vector fields generating a distribution which represents a space of the robot’s allowable movement directions. An arbitrary choice of such generators generates the entire tangent space of the configuration space, i.e. the distribution is bracket-generating, but our choice additionally generates a finite dimensional Lie algebra over real numbers. This allows us to extend our model to a model with local Lie group structure, which may have interesting consequences for our original model. (English)
Keyword: non-integrable distribution
Keyword: infinitesimal symmetry
Keyword: solvable Lie group
Keyword: snake robot
MSC: 22E60
MSC: 37J60
MSC: 70Q05
DOI: 10.5817/AM2024-4-221
.
Date available: 2024-11-27T08:34:22Z
Last updated: 2024-11-27
Stable URL: http://hdl.handle.net/10338.dmlcz/152641
.
Reference: [1] Anderson, I., Kruglikov, B.: Rank 2 distributions of monge equations: symmetries, equivalences, extensions.Adv. Math. 228 (3) (2011), 1435–1465. MR 2824560, 10.1016/j.aim.2011.06.019
Reference: [2] Cartan, É.: Les systèmes de pfaff, à cinq variables et les équations aux dérivées partielles du second ordre.Ann. Sci. Éc. Norm. Supér. (4) 27 (1910), 109–192. MR 1509120, 10.24033/asens.618
Reference: [3] Hrdina, J., Návrat, A., Vašík, P.: Control of 3-link robotic snake based on conformal geometric algebra.Adv. Appl. Clifford Algebr. 26 (2016), 1069–1080. MR 3541137, 10.1007/s00006-015-0621-2
Reference: [4] Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications.Amer. Math. Soc., 2002. Zbl 1044.53022, MR 1867362
Reference: [5] Olver, P.J.: Equivalence, Invariants and Symmetry.London Mathematical Society Lecture Note, Cambridge University Press, 1995. Zbl 0837.58001, MR 1337276
Reference: [6] The, D.: Exceptionally simple PDE [Presentation].Pure Math. Colloquium, University of Waterloo, Canada, 2018, January 5, 2018, available online (as of 2024-04-05): https://math.uit.no/ansatte/dennis/talks/ExcSimpPDE-Waterloo2018.pdf.
.

Files

Files Size Format View
ArchMathRetro_060-2024-4_3.pdf 435.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo