Previous |  Up |  Next

Article

Title: Morley finite element analysis for fourth-order elliptic equations under a semi-regular mesh condition (English)
Author: Ishizaka, Hiroki
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 6
Year: 2024
Pages: 769-805
Summary lang: English
.
Category: math
.
Summary: We present a precise anisotropic interpolation error estimate for the Morley finite element method (FEM) and apply it to fourth-order elliptic equations. We do not impose the shape-regularity mesh condition in the analysis. Anisotropic meshes can be used for this purpose. The main contributions of this study include providing a new proof of the term consistency. This enables us to obtain an anisotropic consistency error estimate. The core idea of the proof involves using the relationship between the Raviart-Thomas and Morley finite-element spaces. Our results indicate optimal convergence rates and imply that the modified Morley FEM may be effective for errors. (English)
Keyword: Morley finite element
Keyword: anisotropic interpolation error
Keyword: fourth-order elliptic problem
MSC: 65D05
MSC: 65N30
DOI: 10.21136/AM.2024.0103-24
.
Date available: 2024-12-13T19:00:07Z
Last updated: 2024-12-16
Stable URL: http://hdl.handle.net/10338.dmlcz/152669
.
Reference: [1] Acosta, G., Apel, T., Durán, R. G., Lombardi, L.: Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra.Math. Comput. 80 (2011), 141-163. Zbl 1223.65086, MR 2728975, 10.1090/S0025-5718-2010-02406-8
Reference: [2] Acosta, G., Durán, R. G.: The maximum angle condition for mixed and nonconforming elements: Application to the Stokes equations.SIAM J. Numer. Anal. 37 (1999), 18-36. Zbl 0948.65115, MR 1721268, 10.1137/S0036142997331293
Reference: [3] Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications.Advances in Numerical Mathematics. B. G. Teubner, Stuttgart (1999). Zbl 0934.65121, MR 1716824
Reference: [4] Apel, T., Dobrowolski, M.: Anisotropic interpolation with applications to the finite element method.Computing 47 (1992), 277-293. Zbl 0746.65077, MR 1155498, 10.1007/BF02320197
Reference: [5] Apel, T., Nicaise, S., Schöberl, J.: Crouzeix-Raviart type finite elements on anisotropic meshes.Numer. Math. 89 (2001), 193-223. Zbl 0989.65130, MR 1855825, 10.1007/PL00005466
Reference: [6] Arnold, D. N., Brezzi, F.: Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates.RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 7-32. Zbl 0567.65078, MR 0813687, 10.1051/m2an/1985190100071
Reference: [7] Babuška, I., Aziz, A. K.: On the angle condition in the finite element method.SIAM J. Numer. Anal. 13 (1976), 214-226. Zbl 0324.65046, MR 0455462, 10.1137/071302
Reference: [8] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods.Texts in Applied Mathematics 15. Springer, New York (2008). Zbl 1135.65042, MR 2373954, 10.1007/978-0-387-75934-0
Reference: [9] Cahn, J. W., Hilliard, J. E.: Free energy of a nonuniform system. I. Interfacial free energy.J. Chem. Phys. 28 (1958), 258-267. Zbl 1431.35066, 10.1063/1.1744102
Reference: [10] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Classics in Applied Mathematics 40. SIAM, New York (2002). Zbl 0999.65129, MR 1930132, 10.1137/1.9780898719208
Reference: [11] Durán, R. G., Lombardi, A. L.: Error estimates for the Raviart-Thomas interpolation under the maximum angle condition.SIAM J. Numer. Anal. 46 (2008), 1442-1453. Zbl 1168.65061, MR 2391001, 10.1137/060665312
Reference: [12] Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements.Applied Mathematical Sciences 159. Springer, New York (2004). Zbl 1059.65103, MR 2050138, 10.1007/978-1-4757-4355-5
Reference: [13] Ern, A., Guermond, J.-L.: Finite Elements I. Approximation and Interpolation.Texts in Applied Mathematics 72. Springer, Cham (2021). Zbl 1476.65003, MR 4242224, 10.1007/978-3-030-56341-7
Reference: [14] Falk, R. S., Morley, M. E.: Equivalence of finite element methods for problems in elasticity.SIAM J. Numer. Anal. 27 (1990), 1486-1505. Zbl 0722.73068, MR 1080333, 10.1137/072708
Reference: [15] Farhloul, M., Nicaise, S., Paquet, L.: Some mixed finite element methods on anisotropic meshes.M2AN, Math. Model. Numer. Anal. 35 (2001), 907-920. Zbl 0990.65129, MR 1866274, 10.1051/m2an:2001142
Reference: [16] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms.Springer Series in Computational Mathematics 5. Springer, Berlin (1986). Zbl 0585.65077, MR 0851383, 10.1007/978-3-642-61623-5
Reference: [17] Grisvard, P.: Singularities in Boundary Value Problems.Recherches en Mathématiques Appliquées 22. Masson, Paris (1992). Zbl 0766.35001, MR 1173209
Reference: [18] Grisvard, P.: Elliptic Problems in Nonsmooth Domains.Classics in Applied Mathematics 69. SIAM, Philadelphia (2011). Zbl 1231.35002, MR 3396210, 10.1137/1.9781611972030.ch1
Reference: [19] Ishizaka, H.: Anisotropic Raviart-Thomas interpolation error estimates using a new geometric parameter.Calcolo 59 (2022), Article ID 50, 27 pages. Zbl 1506.65215, MR 4514907, 10.1007/s10092-022-00494-1
Reference: [20] Ishizaka, H., Kobayashi, K., Tsuchiya, T.: General theory of interpolation error estimates on anisotropic meshes.Japan J. Ind. Appl. Math. 38 (2021), 163-191. Zbl 1467.65009, MR 4213001, 10.1007/s13160-020-00433-z
Reference: [21] Ishizaka, H., Kobayashi, K., Tsuchiya, T.: Anisotropic interpolation error estimates using a new geometric parameter.Japan J. Ind. Appl. Math. 40 (2023), 475-512. Zbl 1509.65007, MR 4528995, 10.1007/s13160-022-00535-w
Reference: [22] John, V.: Finite Element Methods for Incompressible Flow Problems.Springer Series in Computational Mathematics 51. Springer, Cham (2016). Zbl 1358.76003, MR 3561143, 10.1007/978-3-319-45750-5
Reference: [23] Kellogg, R. B., Osborn, J. E.: A regularity result for the Stokes problem in a convex polygon.J. Funct. Anal. 21 (1976), 397-431. Zbl 0317.35037, MR 0404849, 10.1016/0022-1236(76)90035-5
Reference: [24] Křížek, M.: On the maximum angle condition for linear tetrahedral elements.SIAM J. Numer. Anal. 29 (1992), 513-520. Zbl 0755.41003, MR 1154279, 10.1137/0729031
Reference: [25] Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problem.Rev. Franc. Automat. Inform. Rech. Operat. 9 (1975), 9-53. Zbl 0319.73042, MR 0423968, 10.1051/m2an/197509R100091
Reference: [26] Linke, A.: On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime.Comput. Methods Appl. Mech. Eng. 268 (2014), 782-800. Zbl 1295.76007, MR 3133522, 10.1016/j.cma.2013.10.011
Reference: [27] Mao, S., Nicaise, S., Shi, Z.-C.: Error estimates of Morley triangular element satisfying the maximal angle condition.Int. J. Numer. Anal. Model. 7 (2010), 639-655. Zbl 1407.74089, MR 2644296
Reference: [28] Ming, W., Xu, J.: The Morley element for fourth order elliptic equations in any dimensions.Numer. Math. 103 (2006), 155-169. Zbl 1092.65103, MR 2207619, 10.1007/s00211-005-0662-x
Reference: [29] Morley, L. S. D.: The triangular equilibrium element in the solution of plate bending problems.Aero Quart. 19 (1968), 149-169. 10.1017/S0001925900004546
Reference: [30] Nilssen, T. K., Tai, X.-C., Winther, R.: A robust nonconforming $H^2$-element.Math. Comput. 70 (2001), 489-505. Zbl 0965.65127, MR 1709156, 10.1090/S0025-5718-00-01230-8
Reference: [31] Rannacher, R.: Finite element approximation of supported plates and the Babuška paradox.Z. Angew. Math. Mech. 59 (1979), T73--T76. Zbl 0421.73072, MR 0533989
Reference: [32] Rannacher, R.: On nonconforming and mixed finite element methods for plate bending problems: The linear case.RAIRO, Anal. Numér. 13 (1979), 369-387. Zbl 0425.35042, MR 0555385, 10.1051/m2an/1979130403691
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo