Previous |  Up |  Next

Article

Title: Thermo-viscous fluid flow in porous slab bounded between two impermeable parallel plates in relative motion: Four stage algorithm approach (English)
Author: Pothanna, Nalimela
Author: Aparna, Podila
Author: Reddy, M. Pavankumar
Author: Reddy, R. Archana
Author: Anand, M. Clement Joe
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 6
Year: 2024
Pages: 807-827
Summary lang: English
.
Category: math
.
Summary: The problem of an approximate solution of thermo-viscous fluid flow in a porous slab bounded between two impermeable parallel plates in relative motion is examined in this paper. The two plates are kept at two different temperatures and the flow is generated by a constant pressure gradient together with the motion of one of the plates relative to the other. The velocity and temperature distributions have been obtained by a four-stage algorithm approach. It is worth mentioning that reverse effects are noticed on velocity and temperature distributions. These effects can be attributed to Darcy's friction offered by the medium. The approximation results obtained in the present paper are in good agreement with the earlier numerical results of thermo-viscous fluid flows in plane geometry. (English)
Keyword: Darcy's porosity parameter
Keyword: thermo-mechanical stress coefficient
Keyword: strain thermal conductivity coefficient
MSC: 35Q35
MSC: 58D30
DOI: 10.21136/AM.2024.0144-23
.
Date available: 2024-12-13T19:01:24Z
Last updated: 2024-12-16
Stable URL: http://hdl.handle.net/10338.dmlcz/152670
.
Reference: [1] Aparna, P., Padmaja, P., Pothanna, N., Murthy, J. V. Ramana: Uniform flow of viscous fluid past a porous sphere saturated with micro polar fluid.Biointerface Research Appl. Chem. 13 (2023), Article ID 69, 12 pages. 10.33263/BRIAC131.069
Reference: [2] Aparna, P., Pothanna, N., Murthy, J. V. Ramana: Viscous fluid flow past a permeable cylinder.Numerical Heat Transfer and Fluid Flow Springer, Singapore (2018), 285-293. 10.1007/978-981-13-1903-7_33
Reference: [3] Aparna, P., Pothanna, N., Murthy, J. V. Ramana: Rotary oscillations of a permeable sphere in an incompressible couple stress fluid.Advances in Fluid Dynamics Springer, Singapore (2020), 135-146. 10.1007/978-981-15-4308-1_10
Reference: [4] Aparna, P., Pothanna, N., Murthy, J. V. Ramana, Sreelatha, K.: Flow generated by slow steady rotation of a permeable sphere in a micro-polar fluid.Alexandria Eng. J. 56 (2017), 679-685. 10.1016/j.aej.2017.01.018
Reference: [5] Bakar, S. A., Arifin, N. M., Pop, I.: Stability analysis on mixed convection nanofluid flow in a permeable porous medium with radiation and internal heat generation.J. Adv. Res. Micro Nano Eng. 13 (2023), 1-17. 10.37934/armne.13.1.117
Reference: [6] Benkara-Mostefa, K. H., Benchabi-Lanani, R.: Heat transfer and entropy generation of turbulent flow in corrugated channel using nanofluid.J. Adv. Res. Fluid Mech. Thermal Sci. 109 (2023), 136-150. 10.37934/arfmts.109.2.136150
Reference: [7] Chu, Y.-M., Alzahrani, F., Mopuri, O., Ganteda, C., Khan, M. I., Laksmi, P. J., Khan, S. U., Eldin, S. M.: Thermal impact of hybrid nanofluid due to inclined oscillatory porous surface with thermo-diffusion features.Case Stud. Thermal Eng. 42 (2023), Article ID 102695, 16 pages. 10.1016/j.csite.2023.102695
Reference: [8] Coleman, B. D., Mizel, V. J.: Existence of caloric equations of state in thermodynamics.J. Chem. Phys. 40 (1964), 1116-1125. MR 0161576, 10.1063/1.1725257
Reference: [9] Darcy, H.: Les fontaines publiques de la ville de Dijon.Victor Dalmont, Paris (1856), French.
Reference: [10] Ferry, J. D.: Viscoelastic Properties of Polymers.John Wiley & Sons, New York (1961).
Reference: [11] Green, A. E., Naghdi, P. M.: A dynamical theory of interacting continua.Int. J. Eng. Sci. 3 (1965), 231-241. MR 0186267, 10.1016/0020-7225(65)90046-7
Reference: [12] Heuer, N., Linss, T.: A balanced finite-element method for an axisymmetrically loaded thin shell.Appl. Math., Praha 69 (2024), 151-168. Zbl 7893329, MR 4728189, 10.21136/AM.2024.0134-23
Reference: [13] Juwari, J., Wicaksono, A. D. Monlei, Arbianzah, T., Anugraha, R. P., Handogo, R.: Simulation of dispersion and explosion in petrol station using 3D computational fluid dynamics FLACS software.J. Adv. Res. Fluid Mech. Thermal Sci. 109 (2023), 113-135. 10.37934/arfmts.109.2.113135
Reference: [14] Kelly, P. D.: Some viscometric flows of incompressible thermoviscous fluids.Int. J. Eng. Sci. 2 (1965), 519-533. MR 0177574, 10.1016/0020-7225(65)90007-8
Reference: [15] Khan, M., Malik, M. Y., Salahuddin, T., Hussian, A.: Heat and mass transfer of Williamson nanofluid flow yield by an inclined Lorentz force over a nonlinear stretching sheet.Results Phys. 8 (2018), 862-868. 10.1016/j.rinp.2018.01.005
Reference: [16] Khan, M., Salahuddin, T., Malik, M. Y., Khan, F.: Change in internal energy of Carreau fluid flow along with ohmic heating: A von Karman application.Physica A 547 (2020), Article ID 123440, 11 pages. Zbl 07530142, MR 4081575, 10.1016/j.physa.2019.123440
Reference: [17] Khan, M., Salahuddin, T., Malik, M. Y., Tanveer, A., Hussain, A., Alqahtani, A. S.: 3-D axisymmetric Carreau nanofluid flow near the Homann stagnation region along with chemical reaction: Application Fourier's and Fick's laws.Math. Comput. Simul. 170 (2020), 221-235. Zbl 1510.76200, MR 4046640, 10.1016/j.matcom.2019.10.019
Reference: [18] Koh, S. L., Eringen, A. C.: On the foundations of non-linear thermo-viscoelasticity.Int. J. Eng. Sci. 1 (1963), 199-229. MR 0151044, 10.1016/0020-7225(63)90034-X
Reference: [19] Devi, P. N. Lakshmi, Meduri, P. K.: Oscillatory flow of couple stress fluid flow over a contaminated fluid sphere with slip condition.CFD Lett. 15 (2023), 148-165. MR 4543464, 10.37934/cfdl.15.8.148165
Reference: [20] Langlois, W., Rivlin, R.: Slow steady-state flow of visco-elastic fluids through non-circular tubes.Rend. Mat. Appl., V. Ser. 22 (1963), 169-185. Zbl 0113.40405, MR 0154526
Reference: [21] Li, S., Khan, M. I., Alruqi, A. B., Khan, S. U., Abdullaev, S. S., Fadhl, B. M., Makhdoum, B. M.: Entropy optimized flow of Sutterby nanomaterial subject to porous medium: Buongiorno nanofluid model.Heliyon 9 (2023), Article ID e17784, 16 pages. 10.1016/j.heliyon.2023.e17784
Reference: [22] Rao, P. Nageswara, Ramacharyulu, N. C. Pattabhi: Steady flow of a second-order thermo-viscous fluid over an infinite plate.Proc. Indian Acad. Sci., Sect. A, Part III 88 (1979), 157-162. Zbl 0406.76012, 10.1007/BF02871612
Reference: [23] Padmaja, P., Aparna, P., Gorla, R. S. R., Pothanna, N.: Numerical solution of singularly perturbed two parameter problems using exponential splines.Int. J. Appl. Mech. Eng. 26 (2021), 160-172. 10.2478/ijame-2021-0025
Reference: [24] Pothanna, N., Aparna, P., Gorla, R. S. R.: A numerical study of coupled non-linear equations of thermo-viscous fluid flow in cylindrical geometry.Int. J. Appl. Mech. Eng. 22 (2017), 965-979. 10.1515/ijame-2017-0062
Reference: [25] Pothanna, N., Aparna, P., Sireesha, G., Padmaja, P.: Analytical and numerical study of steady flow of thermo-viscous fluid between two horizontal parallel plates in relative motion.Commun. Math. Appl. 13 (2022), 1427-1441. 10.26713/cma.v13i5.2254
Reference: [26] Pothanna, N., Ramacharyulu, N. C. Pattabhi, Rao, P. Nageswara: Slow steady motion of a thermo-viscous fluid in a porous slab bounded between two impermeable parallel plates.Adv. Appl. Sci. Res. 3 (2012), 2866-2883.
Reference: [27] Pothanna, N., Ramacharyulu, N. C. Pattabhi, Rao, P. Nageswara: Steady flow of a slightly thermo-viscous fluid in a porous slab bounded between two fixed porous parallel plates.Int. J. Math. Arch. 3 (2012), 1125-1135.
Reference: [28] Pothanna, N., Ramacharyulu, N. C. Pattabhi, Rao, P. Nageswara: Flow of slightly thermo-viscous fluid in a porous slab bounded between two permeable parallel plates.Int. J. Adv. Appl. Math. Mech. 2 (2015), 225-233. Zbl 1359.76028, MR 3372994
Reference: [29] Preziosi, L., Farina, A.: On Darcy's law for growing porous media.Int. J. Non-Linear Mech. 37 (2002), 485-491. Zbl 1346.76194, 10.1016/S0020-7462(01)00022-1
Reference: [30] Rivlin, R. S.: The solution of problems in second order elasticity theory.J. Ration. Mech. Anal. 2 (1953), 58-81. Zbl 0050.18601, MR 0051676, 10.1512/iumj.1953.2.52002
Reference: [31] Rivlin, R. S., Topakoglu, C.: A theorem in the theory of finite elastic deformations.J. Ration. Mech. Anal. 3 (1954), 581-589. Zbl 0056.42603, MR 0063231, 10.1512/iumj.1954.3.53030
Reference: [32] Terapabkajornded, Y., Orankitjaroen, S., Licht, C., Weller, T.: Asymptotic modeling of the transient response of nonlinear Kelvin-Voigt viscoelastic thin plates with Norton or Tresca friction by Trotter theory.Appl. Math., Praha 69 (2024), 25-48. Zbl 07830497, MR 4709332, 10.21136/AM.2023.0013-23
Reference: [33] Yamamoto, K., Yoshida, Z.: Flow through a porous wall with convective acceleration.J. Phys. Soc. Japan 37 (1974), 774-779. 10.1143/JPSJ.37.774
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo