Summary: We conduct an in-depth investigation into the structure of the Bogomolov multiplier for groups of order $p^7$ $(p > 2)$ and exponent $p$. We present a comprehensive classification of these groups, identifying those with nontrivial Bogomolov multipliers and distinguishing them from groups with trivial multipliers. Our analysis not only clarifies the conditions under which the Bogomolov multiplier is nontrivial but also refines existing computational methods, enhancing the process of determining these multipliers for the specified class of $p$-groups.
[1] Artin, M., Mumford, D.: Some elementary examples of unirational varieties which are not rational. Proc. Lond. Math. Soc., III. Ser. 25 (1972), 75-95. DOI 10.1112/PLMS/S3-25.1.75 | MR 0321934 | Zbl 0244.14017
[5] Chu, H., Hu, S.-J., Kang, M.-C., Kunyavskii, B. E.: Noether's problem and the unramified Brauer groups for groups of order 64. Int. Math. Res. Not. 12 (2010), 2329-2366. DOI 10.1093/imrn/rnp217 | MR 2652224 | Zbl 1196.12005
[10] Kunyavskii, B.: The Bogomolov multiplier of finite simple groups. Cohomological and Geometric Approaches to Rationality Problems Progres in Mathematics 282. Birkhäuser, Boston (2010), 209-217. DOI 10.1007/978-0-8176-4934-0_8 | MR 2605170 | Zbl 1204.14006
[16] Noether, E.: Gleichungen mit vorgeschriebener Gruppe. Math. Ann. 78 (1917), 221-229 German \99999JFM99999 46.0135.01. DOI 10.1007/BF01457099 | MR 1511893
[17] O'Brien, E.: Polycyclic group. Available at www.math.auckland.ac.nz/ {obrien/GAC-lectures.pdf} (2010), 51 pages.