Previous |  Up |  Next

Article

Title: Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra (English)
Author: Wang, Xing
Author: Lu, Daowei
Author: Wang, Ding-Guo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 4
Year: 2024
Pages: 1059-1082
Summary lang: English
.
Category: math
.
Summary: We study certain subgroups of the Hopf group-coalgebra automorphism group of Radford's $\pi $-biproduct. Firstly, we discuss the endomorphism monoid ${\rm End}_{\pi \text {-Hopf}}(A\times \nobreak H, p)$ and the automorphism group ${\rm Aut}_{\pi \text {-Hopf}}(A\times H, p)$ of Radford's $\pi $-biproduct $A \times H =\{A \times H_\alpha \}_{\alpha \in \pi }$, and prove that the automorphism has a factorization closely related to the factors $A$ and $H=\{H_\alpha \}_{\alpha \in \pi }$. What's more interesting is that a pair of maps $(F_L,F_R)$ can be used to describe a family of mappings $F=\{F_\alpha \}_{\alpha \in \pi }$. Secondly, we consider the relationship between the automorphism group ${\rm Aut}_{\pi \text {-Hopf}}(A\times H, p)$ and the automorphism group ${\rm Aut}_{\pi \text {-}\mathcal {Y}\mathcal {D}\text {-Hopf}}(A)$ of $A$, and a normal subgroup of the automorphism group ${\rm Aut}_{\pi \text {-Hopf}}(A\times H, p)$. Finally, we specifically describe the automorphism group of an example. (English)
Keyword: Hopf group-coalgebra
Keyword: Radford's $\pi $-biproduct
Keyword: automorphism
MSC: 16T05
MSC: 16U20
DOI: 10.21136/CMJ.2024.0454-23
.
Date available: 2024-12-15T06:35:33Z
Last updated: 2024-12-16
Stable URL: http://hdl.handle.net/10338.dmlcz/152689
.
Reference: [1] Andruskiewitsch, N., Schneider, H.-J.: On the classification of finite-dimensional pointed Hopf algebras.Ann. Math. (2) 171 (2010), 375-417. Zbl 1208.16028, MR 2630042, 10.4007/annals.2010.171.375
Reference: [2] Bulacu, D., Nauwelaerts, E.: Radford's biproduct for quasi-Hopf algebras and bosonization.J. Pure Appl. Algebra 174 (2002), 1-42. Zbl 1014.16036, MR 1924081, 10.1016/S0022-4049(02)00014-2
Reference: [3] Delvaux, L.: Multiplier Hopf algebras in categories and the biproduct construction.Algebr. Represent. Theory 10 (2007), 533-554. Zbl 1163.16026, MR 2350225, 10.1007/s10468-007-9053-6
Reference: [4] Guo, S., Wang, S.: Crossed products of weak Hopf group coalgebras.Acta Math. Sci., Ser. A, Chin. Ed. 34 (2014), 327-337 Chinese. Zbl 1313.16066, MR 3186397
Reference: [5] Ma, T., Song, Y.: Hopf $\pi$-crossed biproduct and related coquasitriangular structures.Rend. Semin. Mat. Univ. Padova 130 (2013), 127-145. Zbl 1296.16034, MR 3148634, 10.4171/rsmup/130-3
Reference: [6] Radford, D. E.: The structure of Hopf algebras with a projection.J. Algebra 92 (1985), 322-347. Zbl 0549.16003, MR 0778452, 10.1016/0021-8693(85)90124-3
Reference: [7] Radford, D. E.: On automorphisms of biproducts.Commun. Algebra 45 (2017), 1365-1398. Zbl 1381.16035, MR 3576664, 10.1080/00927872.2016.1172599
Reference: [8] Shen, B.-L., Liu, L.: Radford's biproducts for Hopf group-coalgebras and its quasitriangular structures.Abh. Math. Semin. Univ. Hamb. 83 (2013), 129-146. Zbl 1270.16029, MR 3055826, 10.1007/s12188-013-0079-x
Reference: [9] Shen, B.-L., Wang, S.-H.: Blattner-Cohen-Montgomery's duality theorem for (weak) group smash products.Commun. Algebra 36 (2008), 2387-2409. Zbl 1153.16039, MR 2418392, 10.1080/00927870701509495
Reference: [10] Sweedler, M. E.: Hopf Algebras.Mathematics Lecture Note Series. W. A. Benjamin, New York (1969). Zbl 0194.32901, MR 0252485
Reference: [11] Turaev, V.: Homotopy field theory in dimension 3 and crossed group-categories.Available at https://arxiv.org/abs/math/0005291 (2000), 76 pages. 10.48550/arXiv.math/0005291
Reference: [12] Turaev, V.: Crossed group-categories.Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 483-503. Zbl 1185.18009, MR 2500054
Reference: [13] Daele, A. Van, Wang, S.: New braided crossed categories and Drinfel'd quantum double for weak Hopf group coalgebras.Commun. Algebra 36 (2008), 2341-2386. Zbl 1154.16031, MR 2418391, 10.1080/00927870701509420
Reference: [14] Virelizier, A.: Hopf group-coalgebras.J. Pure Appl. Algebra 171 (2002), 75-122. Zbl 1011.16023, MR 1903398, 10.1016/S0022-4049(01)00125-6
Reference: [15] Virelizier, A.: Graded quantum groups and quasitriangular Hopf group-coalgebras.Commun. Algebra 33 (2005), 3029-3050. Zbl 1084.16034, MR 2175378, 10.1081/AGB-200066110
Reference: [16] Wang, S.-H.: Group twisted smash products and Doi-Hopf modules for $T$-coalgebras.Commun. Algebra 32 (2004), 3417-3436. Zbl 1073.16034, MR 2097469, 10.1081/AGB-120039402
Reference: [17] Wang, S., Jiao, Z., Zhao, W.: Hopf algebra structures on crossed products.Commun. Algebra 26 (1998), 1293-1303. Zbl 0898.16028, MR 1612240, 10.1080/00927879808826199
Reference: [18] Zunino, M.: Double construction for crossed Hopf coalgebras.J. Algebra 278 (2004), 43-75. Zbl 1058.16035, MR 2068066, 10.1016/j.jalgebra.2004.03.019
Reference: [19] Zunino, M.: Yetter-Drinfeld modules for crossed structures.J. Pure Appl. Algebra 193 (2004), 313-343. Zbl 1075.16019, MR 2076391, 10.1016/j.jpaa.2004.02.014
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo