Previous |  Up |  Next

Article

Title: Some results on Sylow numbers of finite groups (English)
Author: Liu, Yang
Author: Zhang, Jinjie
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 4
Year: 2024
Pages: 1083-1095
Summary lang: English
.
Category: math
.
Summary: We study the group structure in terms of the number of Sylow $p$-subgroups, which is denoted by $n_p(G)$. The first part is on the group structure of finite group $G$ such that $n_p(G)=n_p(G/N)$, where $N$ is a normal subgroup of $G$. The second part is on the average Sylow number ${\rm asn}(G)$ and we prove that if $G$ is a finite nonsolvable group with ${\rm asn}(G)<39/4$ and ${\rm asn}(G)\neq 29/4$, then $G/F(G)\cong A_5$, where $F(G)$ is the Fitting subgroup of $G$. In the third part, we study the nonsolvable group with small sum of Sylow numbers. (English)
Keyword: Sylow number
Keyword: nonsolvable group
MSC: 20D05
MSC: 20D20
DOI: 10.21136/CMJ.2024.0466-23
.
Date available: 2024-12-15T06:36:02Z
Last updated: 2024-12-16
Stable URL: http://hdl.handle.net/10338.dmlcz/152690
.
Reference: [1] Anabanti, C. S., Moretó, A., Zarrin, M.: Influence of the number of Sylow subgroups on solvability of finite groups.C. R. Math., Acad. Sci. Paris 358 (2020), 1227-1230. Zbl 1472.20027, MR 4206543, 10.5802/crmath.146
Reference: [2] Asboei, A. K., Amiri, S. S. S.: On the average number of Sylow subgroups in finite groups.Czech. Math. J. 72 (2022), 747-750. Zbl 07584099, MR 4467939, 10.21136/CMJ.2021.0131-21
Reference: [3] Asboei, A. K., Darafsheh, M. R.: On sums of Sylow numbers of finite groups.Bull. Iran. Math. Soc. 44 (2018), 1509-1518. Zbl 1452.20009, MR 3878407, 10.1007/s41980-018-0104-z
Reference: [4] Chigira, N.: Number of Sylow subgroups and $p$-nilpotence of finite groups.J. Algebra 201 (1998), 71-85. Zbl 0932.20016, MR 1608687, 10.1006/jabr.1997.7268
Reference: [5] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups.Oxford University Press, Oxford (1985). Zbl 0568.20001, MR 0827219
Reference: [6] M. Hall, Jr.: On the number of Sylow subgroups of a finite group.J. Algebra 7 (1967), 363-371. Zbl 0178.02102, MR 0222159, 10.1016/0021-8693(67)90076-2
Reference: [7] Hall, P.: A note on soluble groups.J. Lond. Math. Soc. 3 (1928), 98-105 \99999JFM99999 54.0145.01. MR 1574393, 10.1112/jlms/s1-3.2.98
Reference: [8] Hurt, N. E.: Many Rational Points: Coding Theory and Algebraic Geometry.Mathematics and its Applications 564. Kluwer Academic, Dordrecht (2003). Zbl 1072.11042, MR 2042828, 10.1007/978-94-017-0251-5
Reference: [9] Kondrat'ev, A. S.: Normalizers of the Sylow 2-subgroups in finite simple groups.Math. Notes 78 (2005), 338-346. Zbl 1111.20017, MR 2227510, 10.1007/s11006-005-0133-9
Reference: [10] Lu, J., Meng, W., Moretó, A., Wu, K.: Notes on the average number of Sylow subgroups of finite groups.Czech. Math. J. 71 (2021), 1129-1132. Zbl 07442478, MR 4339115, 10.21136/CMJ.2021.0229-20
Reference: [11] Moretó, A.: Groups with two Sylow numbers are the product of two nilpotent Hall subgroups.Arch. Math. 99 (2012), 301-304. Zbl 1264.20023, MR 2990148, 10.1007/s00013-012-0429-4
Reference: [12] Moretó, A.: Sylow numbers and nilpotent Hall subgroups.J. Algebra 379 (2013), 80-84. Zbl 1285.20019, MR 3019246, 10.1016/j.jalgebra.2012.12.030
Reference: [13] Moretó, A.: The average number of Sylow subgroups of a finite group.Math. Nachr. 287 (2014), 1183-1185. Zbl 1310.20026, MR 3231532, 10.1002/mana.201300064
Reference: [14] Zhang, J.: Sylow numbers of finite groups.J. Algebra 176 (1995), 111-123. Zbl 0832.20042, MR 1345296, 10.1006/jabr.1995.1235
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo