Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
unbounded complete Reinhardt domain; Hankel operator; Hilbert-Schmidt operator
Summary:
We consider a class of unbounded nonhyperbolic complete Reinhardt domains $$ D_{n,m,k}^{\mu ,p,s}:=\Big \{(z,w_1,\cdots ,w_m)\in \mathbb {C}^{n}\times \mathbb {C}^{k_1}\times \cdots \times \mathbb {C}^{k_m}\colon \frac {\| w_1\|^{2p_1}}{{\rm e}^{-\mu _1\| z\|^{s}}}+\cdots +\frac {\| w_m\|^{2p_m}}{{\rm e}^{-\mu _m\| z\|^{s}}}<1\Big \}, $$ where $s$, $p_1,\cdots ,p_m$, $\mu _1,\cdots ,\mu _m$ are positive real numbers and $n$, $k_1,\cdots ,k_m$ are positive integers. We show that if a Hankel operator with anti-holomorphic symbol is Hilbert-Schmidt on the Bergman space $A^2(D_{n,m,k}^{\mu ,p,s})$, then it must be zero. This gives an example of high dimensional unbounded complete Reinhardt domain that does not admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols.
References:
[1] Arazy, J.: Boundedness and compactness of generalized Hankel operators on bounded symmetric domains. J. Funct. Anal. 137 (1996), 97-151. DOI 10.1006/jfan.1996.0042 | MR 1383014 | Zbl 0880.47015
[2] Arazy, J., Fisher, S. D., Janson, S., Peetre, J.: An identity for reproducing kernels in a planar domain and Hilbert-Schmidt Hankel operators. J. Reine Angew. Math. 406 (1990), 179-199. DOI 10.1515/crll.1990.406.179 | MR 1048240 | Zbl 0686.47023
[3] Arazy, J., Fisher, S. D., Peetre, J.: Hankel operators on weighted bergman spaces. Am. J. Math. 110 (1988), 989-1053. DOI 10.2307/2374685 | MR 0970119 | Zbl 0669.47017
[4] Beberok, T., Göğüş, N. G.: Hilbert-Schmidt Hankel operators over semi-Reinhardt domains. Available at https://arxiv.org/abs/1604.07059v1 (2016), 9 pages. DOI 10.48550/arXiv.1604.07059
[5] Bi, E., Feng, Z., Tu, Z.: Balanced metrics on the Fock-Bargmann-Hartogs domains. Ann. Global Anal. Geom. 49 (2016), 349-359. DOI 10.1007/s10455-016-9495-3 | MR 3510521 | Zbl 1355.32004
[6] Bi, E., Tu, Z.: Rigidity of proper holomorphic mappings between generalized Fock-Bargmann-Hartogs domains. Pac. J. Math. 297 (2018), 277-297. DOI 10.2140/pjm.2018.297.277 | MR 3893429 | Zbl 1410.32001
[7] Çelik, M., Zeytuncu, Y. E.: Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on complex ellipsoids. Integral Equations Oper. Theory 76 (2013), 589-599. DOI 10.1007/s00020-013-2070-4 | MR 3073947 | Zbl 1288.47028
[8] Çelik, M., Zeytuncu, Y. E.: Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on complete pseudoconvex Reinhardt domains. Czech. Math. J. 67 (2017), 207-217. DOI 10.21136/CMJ.2017.0471-15 | MR 3633007 | Zbl 1482.47050
[9] Chen, S.-C., Shaw, M.-C.: Partial Differential Equations in Several Complex Variables. AMS/IP Studies in Advanced Mathematics 19. AMS, Providence (2001). DOI 10.1090/amsip/019 | MR 1800297 | Zbl 0963.32001
[10] D'Angelo, J. P.: An explicit computation of the Bergman kernel function. J. Geom. Anal. 4 (1994), 23-34. DOI 10.1007/BF02921591 | MR 1274136 | Zbl 0794.32021
[11] Haslinger, F., Lamel, B.: Spectral properties of the canonical solution operator to $\bar{\partial}$. J. Funct. Anal. 255 (2008), 13-24. DOI 10.1016/j.jfa.2008.03.013 | MR 2417807 | Zbl 1169.32009
[12] Huo, Z.: The Bergman kernel on some Hartogs domains. J. Geom. Anal. 27 (2017), 271-299. DOI 10.1007/s12220-016-9681-3 | MR 3606552 | Zbl 1367.32004
[13] Kim, H., Ninh, V. T., Yamamori, A.: The automorphism group of a certain unbounded non-hyperbolic domain. J. Math. Anal. Appl. 409 (2014), 637-642. DOI 10.1016/j.jmaa.2013.07.007 | MR 3103183 | Zbl 1307.32017
[14] Kim, H., Yamamori, A.: The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains. Czech. Math. J. 68 (2018), 611-631. DOI 10.21136/CMJ.2018.0551-16 | MR 3851879 | Zbl 1499.32042
[15] Krantz, S. G., Li, S.-Y., Rochberg, R.: The effect of boundary geometry on Hankel operators belonging to the trace ideals of Bergman spaces. Integral Equations Oper. Theory 28 (1997), 196-213. DOI 10.1007/BF01191818 | MR 1451501 | Zbl 0903.47019
[16] Le, T.: Hilbert-Schmidt Hankel operators over complete Reinhardt domains. Integral Equations Oper. Theory 78 (2014), 515-522. DOI 10.1007/s00020-013-2103-z | MR 3180876 | Zbl 1318.47047
[17] Li, H.: Schatten class Hankel operators on the Bergman spaces of strongly pseudoconvex domains. Proc. Am. Math. Soc. 119 (1993), 1211-1221. DOI 10.1090/S0002-9939-1993-1169879-9 | MR 1169879 | Zbl 0802.47022
[18] Paris, R. B.: A uniform asymptotic expansion for the incomplete gamma function. J. Comput. Appl. Math. 148 (2002), 323-339. DOI 10.1016/S0377-0427(02)00553-8 | MR 1936142 | Zbl 1013.33002
[19] Peloso, M. M.: Hankel operators on weighted Bergman spaces on strongly pseudoconvex domains. Ill. J. Math. 38 (1994), 223-249. DOI 10.1215/ijm/1255986798 | MR 1260841 | Zbl 0812.47023
[20] Retherford, J. R.: Hilbert Space: Compact Operators and the Trace Theorem. London Mathematical Society Student Texts 27. Cambridge University Press, Cambridge (1993). DOI 10.1017/CBO9781139172592 | MR 1237405 | Zbl 0783.47031
[21] Schneider, G.: A different proof for the non-existence of Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on the Bergman space. Aust. J. Math. Anal. Appl. 4 (2007), Article ID 1, 7 pages. MR 2326997 | Zbl 1220.47040
[22] Temme, N. M.: Uniform asymptotics for the incomplete gamma functions starting from negative values of the parameters. Methods Appl. Anal. 3 (1996), 335-344. DOI 10.4310/MAA.1996.v3.n3.a3 | MR 1421474 | Zbl 0863.33002
[23] Tu, Z., Wang, L.: Rigidity of proper holomorphic mappings between certain unbounded non-hyperbolic domains. J. Math. Anal. Appl. 419 (2014), 703-714. DOI 10.1016/j.jmaa.2014.04.073 | MR 3225398 | Zbl 1293.32002
[24] Yamamori, A.: The Bergman kernel of the Fock-Bargmann-Hartogs domain and the polylogarithm function. Complex Var. Elliptic Equ. 58 (2013), 783-793. DOI 10.1080/17476933.2011.620098 | MR 3170660 | Zbl 1272.32002
[25] Zhu, K.: Hilbert-Schmidt Hankel operators on the Bergman space. Proc. Am. Math. Soc. 109 (1990), 721-730. DOI 10.1090/S0002-9939-1990-1013987-7 | MR 1013987 | Zbl 0731.47028
[26] Zhu, K.: Schatten class Hankel operators on the Bergman space of the unit ball. Am. J. Math. 113 (1991), 147-167. DOI 10.2307/2374825 | MR 1087805 | Zbl 0734.47017
Partner of
EuDML logo