Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Sylow number; nonsolvable group
Summary:
We study the group structure in terms of the number of Sylow $p$-subgroups, which is denoted by $n_p(G)$. The first part is on the group structure of finite group $G$ such that $n_p(G)=n_p(G/N)$, where $N$ is a normal subgroup of $G$. The second part is on the average Sylow number ${\rm asn}(G)$ and we prove that if $G$ is a finite nonsolvable group with ${\rm asn}(G)<39/4$ and ${\rm asn}(G)\neq 29/4$, then $G/F(G)\cong A_5$, where $F(G)$ is the Fitting subgroup of $G$. In the third part, we study the nonsolvable group with small sum of Sylow numbers.
References:
[1] Anabanti, C. S., Moretó, A., Zarrin, M.: Influence of the number of Sylow subgroups on solvability of finite groups. C. R. Math., Acad. Sci. Paris 358 (2020), 1227-1230. DOI 10.5802/crmath.146 | MR 4206543 | Zbl 1472.20027
[2] Asboei, A. K., Amiri, S. S. S.: On the average number of Sylow subgroups in finite groups. Czech. Math. J. 72 (2022), 747-750. DOI 10.21136/CMJ.2021.0131-21 | MR 4467939 | Zbl 07584099
[3] Asboei, A. K., Darafsheh, M. R.: On sums of Sylow numbers of finite groups. Bull. Iran. Math. Soc. 44 (2018), 1509-1518. DOI 10.1007/s41980-018-0104-z | MR 3878407 | Zbl 1452.20009
[4] Chigira, N.: Number of Sylow subgroups and $p$-nilpotence of finite groups. J. Algebra 201 (1998), 71-85. DOI 10.1006/jabr.1997.7268 | MR 1608687 | Zbl 0932.20016
[5] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford University Press, Oxford (1985). MR 0827219 | Zbl 0568.20001
[6] M. Hall, Jr.: On the number of Sylow subgroups of a finite group. J. Algebra 7 (1967), 363-371. DOI 10.1016/0021-8693(67)90076-2 | MR 0222159 | Zbl 0178.02102
[7] Hall, P.: A note on soluble groups. J. Lond. Math. Soc. 3 (1928), 98-105 \99999JFM99999 54.0145.01. DOI 10.1112/jlms/s1-3.2.98 | MR 1574393
[8] Hurt, N. E.: Many Rational Points: Coding Theory and Algebraic Geometry. Mathematics and its Applications 564. Kluwer Academic, Dordrecht (2003). DOI 10.1007/978-94-017-0251-5 | MR 2042828 | Zbl 1072.11042
[9] Kondrat'ev, A. S.: Normalizers of the Sylow 2-subgroups in finite simple groups. Math. Notes 78 (2005), 338-346. DOI 10.1007/s11006-005-0133-9 | MR 2227510 | Zbl 1111.20017
[10] Lu, J., Meng, W., Moretó, A., Wu, K.: Notes on the average number of Sylow subgroups of finite groups. Czech. Math. J. 71 (2021), 1129-1132. DOI 10.21136/CMJ.2021.0229-20 | MR 4339115 | Zbl 07442478
[11] Moretó, A.: Groups with two Sylow numbers are the product of two nilpotent Hall subgroups. Arch. Math. 99 (2012), 301-304. DOI 10.1007/s00013-012-0429-4 | MR 2990148 | Zbl 1264.20023
[12] Moretó, A.: Sylow numbers and nilpotent Hall subgroups. J. Algebra 379 (2013), 80-84. DOI 10.1016/j.jalgebra.2012.12.030 | MR 3019246 | Zbl 1285.20019
[13] Moretó, A.: The average number of Sylow subgroups of a finite group. Math. Nachr. 287 (2014), 1183-1185. DOI 10.1002/mana.201300064 | MR 3231532 | Zbl 1310.20026
[14] Zhang, J.: Sylow numbers of finite groups. J. Algebra 176 (1995), 111-123. DOI 10.1006/jabr.1995.1235 | MR 1345296 | Zbl 0832.20042
Partner of
EuDML logo