Previous |  Up |  Next

Article

Title: Unified-like product of monoids and its regularity property (English)
Author: Kırmızı Çetinalp, Esra
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 4
Year: 2024
Pages: 1113-1125
Summary lang: English
.
Category: math
.
Summary: We first define a new monoid construction (called unified-like product $O\mathbin {\Diamond _{\Omega }}J$) under a unified product $O\bowtie J$ and the Schützenberger product $O\mathbin {\Diamond } J$. We investigate whether this algebraic construction defined with operations of the unified and Schützenberger product specifies a monoid or not. Then, we obtain a presentation of this new product for any two monoids. Finally, we define the necessary and sufficient conditions for $O\mathbin {\Diamond _{\Omega }}J$ to be regular. (English)
Keyword: unified product
Keyword: Schützenberger product
Keyword: regularity
MSC: 16S15
MSC: 20D40
MSC: 20L05
DOI: 10.21136/CMJ.2024.0081-24
.
Date available: 2024-12-15T06:37:05Z
Last updated: 2024-12-16
Stable URL: http://hdl.handle.net/10338.dmlcz/152692
.
Reference: [1] Agore, A. L., Chirvăsitu, A., Ion, B., Militaru, G.: Bicrossed products for finite groups.Algebr. Represent. Theory 12 (2009), 481-488. Zbl 1187.20023, MR 2501197, 10.1007/s10468-009-9145-6
Reference: [2] Agore, A. L., Frăţilă, D.: Crossed product of cyclic groups.Czech. Math. J. 60 (2010), 889-901. Zbl 1208.20030, MR 2738954, 10.1007/s10587-010-0065-8
Reference: [3] Agore, A. L., Militaru, G.: Crossed product of groups: Applications.Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 1-17. Zbl 1186.20021, MR 2500024
Reference: [4] Agore, A. L., Militaru, G.: Unified products and split extensions of Hopf algebras.Hopf Algebras and Tensor Categories Contemporary Mathematics 585. AMS, Providence (2013), 1-15. Zbl 1301.16038, MR 3077233, 10.1090/conm/585
Reference: [5] Agore, A. L., Militaru, G.: Unified products for Leibniz algebras: Applications.Linear Algebra Appl. 439 (2013), 2609-2633. Zbl 1281.17003, MR 3095673, 10.1016/j.laa.2013.07.021
Reference: [6] Agore, A. L., Militaru, G.: Extending structures for Lie algebras.Monatsh. Math. 174 (2014), 169-193. Zbl 1378.17033, MR 3201255, 10.1007/s00605-013-0537-7
Reference: [7] Agore, A. L., Militaru, G.: Extending structures. I. The level of groups.Algebr. Represent. Theory 17 (2014), 831-848. Zbl 1337.20029, MR 3254771, 10.1007/s10468-013-9420-4
Reference: [8] Agore, A. L., Militaru, G.: Unified products for Jordan algebras: Applications.J. Pure Appl. Algebra 227 (2023), Article ID 107268, 19 pages. Zbl 1510.17056, MR 4512536, 10.1016/j.jpaa.2022.107268
Reference: [9] Ateş, F.: Some new monoid and group constructions under semi-direct products.Ars Comb. 91 (2009), 203-218. Zbl 1219.20036, MR 2501961
Reference: [10] Çetinalp, E. K.: Regularity of iterated crossed product of monoids.Bull. Int. Math. Virtual Inst. 12 (2022), 151-158. MR 4349201
Reference: [11] Çetinalp, E. K.: Regularity of $n$-generalized Schützenberger product of monoids.J. Balıkesir Univ. Inst. Sci. Technology 24 (2022), 71-78. MR 4795137, 10.25092/baunfbed.903026
Reference: [12] Çetinalp, E. K.: $n$-generalized Schützenberger-crossed product of monoids.Ukr. J. Math. 76 (2024), 276-288. Zbl 7906290, MR 4795137, 10.1007/s11253-024-02321-y
Reference: [13] Çetinalp, E. K., Karpuz, E. G.: Iterated crossed product of cyclic groups.Bull. Iran. Math. Soc. 44 (2018), 1493-1508. Zbl 1407.16024, MR 3878406, 10.1007/s41980-018-0103-0
Reference: [14] Emin, A., Ateş, F., Ikikardeş, S., Cangül, I. N.: A new monoid construction under crossed products.J. Inequal. Appl. 2013 (2013), Article ID 244, 6 pages. Zbl 1286.20068, MR 3068629, 10.1186/1029-242X-2013-244
Reference: [15] Howie, J. M., Ruškuc, N.: Constructions and presentations for monoids.Commun. Algebra 22 (1994), 6209-6224. Zbl 0823.20061, MR 1302999, 10.1080/00927879408825184
Reference: [16] Karpuz, E. G., Ateş, F., Çevik, S.: Regular and $\pi$-inverse monoids under Schützenberger products.Algebras Groups Geom. 27 (2010), 455-469. Zbl 1242.20068, MR 2816635
Reference: [17] Karpuz, E. G., Çetinalp, E. K.: Some remarks on the Schützenberger product of $n$ monoids.Ric. Mat 73 (2024), 2159-2171. Zbl 7909925, MR 4780086, 10.1007/s11587-022-00743-z
Reference: [18] Nico, W. R.: On the regularity of semidirect products.J. Algebra 80 (1983), 29-36. Zbl 0512.20043, MR 0690701, 10.1016/0021-8693(83)90015-7
Reference: [19] Redziejowski, R. R.: Schützenberger-like products in non-free monoids.RAIRO, Inform. Théor. Appl. 29 (1995), 209-226. Zbl 0833.68071, MR 1347594, 10.1051/ita/1995290302091
Reference: [20] Rudkovskij, M. A.: Twisted product of Lie groups.Sib. Math. J. 38 (1997), 969-977. Zbl 0941.20030, MR 1486020, 10.1007/BF02673042
Reference: [21] Schützenberger, M. P.: On finite monoids having only trivial subgroups.Inf. Control 8 (1965), 190-194. Zbl 0131.02001, MR 0176883, 10.1016/S0019-9958(65)90108-7
Reference: [22] Straubing, H.: A generalization of the Schützenberger product of finite monoids.Theor. Comput. Sci. 13 (1981), 137-150. Zbl 0456.20048, MR 0594057, 10.1016/0304-3975(81)90036-0
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo