Previous |  Up |  Next

Article

Title: Characterizations of incidence modules (English)
Author: Ullah, Naseer
Author: Yao, Hailou
Author: Yuan, Qianqian
Author: Azam, Muhammad
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 4
Year: 2024
Pages: 1127-1144
Summary lang: English
.
Category: math
.
Summary: Let $R$ be an associative ring and $M$ be a left $R$-module. We introduce the concept of the incidence module $I(X, M)$ of a locally finite partially ordered set $X$ over $M$. We study the properties of $I(X, M)$ and give the necessary and sufficient conditions for the incidence module to be an IN-module, \EIN -module, nil injective module and nonsingular module, respectively. Furthermore, we show that the class of \EIN -modules is closed under direct product and upper triangular matrix modules. (English)
Keyword: Ikeda Nakayama module
Keyword: essential Ikeda Nakayama module
Keyword: nil injective
Keyword: nonsingular
MSC: 13C13
MSC: 16D70
MSC: 16D80
MSC: 16D99
DOI: 10.21136/CMJ.2024.0092-24
.
Date available: 2024-12-15T06:37:37Z
Last updated: 2024-12-16
Stable URL: http://hdl.handle.net/10338.dmlcz/152693
.
Reference: [1] Agnarsson, G., Amitsur, S. A., Robson, J. C.: Recognition of matrix rings. II.Isr. J. Math. 96 (1996), 1-13. Zbl 0878.16015, MR 1432722, 10.1007/BF02785529
Reference: [2] Ahmed, F. A., Abdul-Jabbar, A. M.: On characterizations and properties of nil-injective rings and modules.AIP Conf. Proc. 2554 (2023), Article ID 020012. 10.1063/5.0104696
Reference: [3] Al-Thukair, F., Singh, S., Zaguia, I.: Maximal ring of quotients of an incidence algebra.Arch. Math. 80 (2003), 358-362. Zbl 1044.16025, MR 1982835, 10.1007/s00013-003-4590-7
Reference: [4] Camillo, V., Nicholson, W. K., Yousif, M. F.: Ikeda-Nakayama rings.J. Algebra 226 (2000), 1001-1010. Zbl 0958.16002, MR 1752773, 10.1006/jabr.1999.8217
Reference: [5] Derakhshan, M., Sahebi, S., Javadi, H. H. S.: A note on essential Ikeda-Nakayama rings.Rend. Circ. Mat. Palermo (2) 71 (2022), 145-151. Zbl 1496.16003, MR 4397978, 10.1007/s12215-021-00610-0
Reference: [6] Doubilet, P., Rota, G.-C., Stanley, R.: On the foundations of combinatorial theory. VI. The idea of generating function.Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability. Volume II. Probability Theory University of California Press, Berkeley (1972), 267-318. Zbl 0267.05002, MR 0403987
Reference: [7] Esin, S., Kanuni, M., Koç, A.: Characterization of some ring properties in incidence algebras.Commun. Algebra 39 (2011), 3836-3848. Zbl 1263.16030, MR 2845605, 10.1080/00927872.2010.512589
Reference: [8] Ikeda, M., Nakayama, T.: On some characteristic properties of quasi-Frobenius and regular rings.Proc. Am. Math. Soc. 5 (1954), 15-19. Zbl 0055.02602, MR 0060489, 10.1090/S0002-9939-1954-0060489-9
Reference: [9] Rota, G.-C.: On the foundations of combinatorial theory. I. Theory of Möbius functions.Z. Wahrscheinlichkeitstheor. Verw. Geb. 2 (1964), 340-368. Zbl 0121.02406, MR 0174487, 10.1007/BF00531932
Reference: [10] Spiegel, E., O'Donnell, C. J.: Incidence Algebra.Pure and Applied Mathematics, Marcel Dekker 206. Marcel Dekker, New York (1997). Zbl 0871.16001, MR 1445562
Reference: [11] Ssevviiri, D., Groenewald, N.: Generalization of nilpotency of ring elements to module elements.Commun. Algebra 42 (2014), 571-577. Zbl 1295.16011, MR 3169589, 10.1080/00927872.2012.718822
Reference: [12] Stanley, R. P.: Enumerative Combinatorics. I.Wadsworth & Brooks/Cole Advanced Books & Software, Monterey (1986). Zbl 0608.05001, MR 0847717, 10.1007/978-1-4615-9763-6
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo