Previous |  Up |  Next

Article

Title: Hall algebra of morphism category (English)
Author: Chen, QingHua
Author: Zhang, Liwang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 4
Year: 2024
Pages: 1145-1164
Summary lang: English
.
Category: math
.
Summary: This paper investigates a universal PBW-basis and a minimal set of generators for the Hall algebra $\mathcal {H}(C_2(\mathcal {P}))$, where $C_2(\mathcal {P})$ is the category of morphisms between projective objects in a finitary hereditary exact category $\mathcal A$. When $\mathcal A$ is the representation category of a Dynkin quiver, we develop multiplication formulas for the degenerate Hall Lie algebra $\mathcal {L}$, which is spanned by isoclasses of indecomposable objects in $C_2(\mathcal {P})$. As applications, we demonstrate that $\mathcal {L}$ contains a Lie subalgebra isomorphic to the central extension of the Heisenberg Lie algebra and construct the Borel subalgebra of the simple Lie algebra associated with $\mathcal A$ as a Lie subquotient algebra of $\mathcal {L}$. (English)
Keyword: Hall algebra
Keyword: morphism category
Keyword: Heisenberg Lie algebra
Keyword: simple Lie algebra
MSC: 16G20
MSC: 17B20
MSC: 17B30
MSC: 18G05
DOI: 10.21136/CMJ.2024.0103-24
.
Date available: 2024-12-15T06:38:08Z
Last updated: 2024-12-16
Stable URL: http://hdl.handle.net/10338.dmlcz/152694
.
Reference: [1] Auslander, M., Reiten, I.: On the representation type of triangular matrix rings.J. Lond. Math. Soc., II. Ser. 12 (1976), 371-382. Zbl 0316.16034, MR 0399174, 10.1112/jlms/s2-12.3.371
Reference: [2] Bautista, R.: The category of morphisms between projective modules.Commun. Algebra 32 (2004), 4303-4331. Zbl 1081.16025, MR 2102451, 10.1081/AGB-200034145
Reference: [3] Berenstein, A., Greenstein, J.: Primitively generated Hall algebras.Pac. J. Math. 281 (2016), 287-331. Zbl 1338.16016, MR 3463039, 10.2140/pjm.2016.281.287
Reference: [4] Birkhoff, G.: Subgroups of Abelian groups.Proc. Lond. Math. Soc. (1935), 385-401. Zbl 0010.34304, MR 1576323, 10.1112/plms/s2-38.1.385
Reference: [5] Bridgeland, T.: Quantum groups via Hall algebras of complexes.Ann. Math. (2) 177 (2013), 739-759. Zbl 1268.16017, MR 3010811, 10.4007/annals.2013.177.2.9
Reference: [6] Irelli, G. Cerulli, Feigin, E., Reineke, M.: Quiver Grassmannians and degenerate flag varieties.Algebra Number Theory 6 (2012), 165-194. Zbl 1282.14083, MR 2950163, 10.2140/ant.2012.6.165
Reference: [7] Chen, Q., Deng, B.: Cyclic complexes, Hall polynomials and simple Lie algebras.J. Algebra 440 (2015), 1-32. Zbl 1328.16007, MR 3373385, 10.1016/j.jalgebra.2015.04.043
Reference: [8] Deng, B., Du, J., Parshall, B., Wang, J.: Finite Dimensional Algebras and Quantum Groups.Mathematical Surveys and Monographs 150. AMS, Providence (2008). Zbl 1154.17003, MR 2457938, 10.1090/surv/150
Reference: [9] Ding, M., Xu, F., Zhang, H.: Acyclic quantum cluster algebras via Hall algebras of morphisms.Math. Z. 296 (2020), 945-968. Zbl 1509.17010, MR 4159816, 10.1007/s00209-020-02465-0
Reference: [10] Eiríksson, "O.: From submodule categories to the stable Auslander algebra.J. Algebra 486 (2017), 98-118. Zbl 1407.16005, MR 3666209, 10.1016/j.jalgebra.2017.05.012
Reference: [11] Gabriel, P.: Unzerlegbare Darstellungen. I.Manuscr. Math. 6 (1972), 71-103 German. Zbl 0232.08001, MR 0332887, 10.1007/BF01298413
Reference: [12] Gabriel, P.: Indecomposable representations. II.Symposia Mathematica, Vol. XI Academic Press, London (1973), 81-104. Zbl 0276.16001, MR 0340377
Reference: [13] Guo, J. Y., Peng, L.: Universal PBW-basis of Hall-Ringel algebras and Hall polynomials.J. Algebra 198 (1997), 339-351. Zbl 0893.16005, MR 1489901, 10.1006/jabr.1997.7065
Reference: [14] Hafezi, R., Eshraghi, H.: Determination of some almost split sequences in morphism categories.J. Algebra 633 (2023), 88-113. Zbl 1528.16008, MR 4610782, 10.1016/j.jalgebra.2023.05.045
Reference: [15] Hubery, A.: From triangulated categories to Lie algebras: A theorem of Peng and Xiao.Trends in Representation Theory of Algebras and Related Topics Contemporary Mathematics 406. AMS, Providence (2006), 51-66. Zbl 1107.16021, MR 2258041, 10.1090/conm/406
Reference: [16] Kussin, D., Lenzing, H., Meltzer, H.: Nilpotent operators and weighted projective lines.J. Reine. Angew. Math. 685 (2013), 33-71. Zbl 1293.16008, MR 3181563, 10.1515/crelle-2012-0014
Reference: [17] Lin, Z.: Abelian quotients arising from extriangulated categories via morphism categories.Algebr. Represent. Theory 26 (2023), 117-136. Zbl 1509.18014, MR 4546135, 10.1007/s10468-021-10087-1
Reference: [18] Luo, X.-H., Zhang, P.: Separated monic representations. I: Gorenstein-projective modules.J. Algebra 479 (2017), 1-34. Zbl 1405.16022, MR 3627275, 10.1016/j.jalgebra.2017.01.038
Reference: [19] Peng, L.: Some Hall polynomials for representation-finite trivial extension algebras.J. Algebra 197 (1997), 1-13. Zbl 0891.16010, MR 1480775, 10.1006/jabr.1997.7113
Reference: [20] Peng, L., Xiao, J.: Root categories and simple Lie algebras.J. Algebra 198 (1997), 19-56. Zbl 0893.16007, MR 1482975, 10.1006/jabr.1997.7152
Reference: [21] Quillen, D.: Higher algebraic $K$-theory. I.Algebr. $K$-Theory. I Lecture Notes in Mathematics 341. Springer, Berlin (1973), 85-147. Zbl 0292.18004, MR 0338129, 10.1007/BFb0067053
Reference: [22] Riedtmann, C.: Lie algebras generated by indecomposables.J. Algebra 170 (1994), 526-546. Zbl 0841.16018, MR 1302854, 10.1006/jabr.1994.1351
Reference: [23] Ringel, C. M., Zhang, P.: From submodule categories to preprojective algebras.Math. Z. 278 (2014), 55-73. Zbl 1344.16011, MR 3267569, 10.1007/s00209-014-1305-7
Reference: [24] Ruan, S., Sheng, J., Zhang, H.: Lie algebras arising from 1-cyclic perfect complexes.J. Algebra 586 (2021), 232-288. Zbl 1477.16022, MR 4287774, 10.1016/j.jalgebra.2021.06.030
Reference: [25] Sevenhant, B., Bergh, M. Van den: On the double of the Hall algebra of a quiver.J. Algebra 221 (1999), 135-160. Zbl 0955.16016, MR 1722908, 10.1006/jabr.1999.7958
Reference: [26] Nasab, A. R. Shir Ali, Hosseini, S. N.: Pullback in partial morphism categories.Appl. Categ. Struct. 25 (2017), 197-225. Zbl 1397.18006, MR 3638360, 10.1007/s10485-015-9420-0
Reference: [27] Wang, G.-J., Li, F.: On minimal horse-shoe lemma.Taiwanese J. Math. 12 (2008), 373-387. Zbl 1143.18012, MR 2402122, 10.11650/twjm/1500574161
Reference: [28] Xiong, B.-L., Zhang, P., Zhang, Y.-H.: Auslander-Reiten translations in monomorphism categories.Forum Math. 26 (2014), 863-912. Zbl 1319.16017, MR 3200353, 10.1515/forum-2011-0003
Reference: [29] Zhang, H.: Minimal generators of Hall algebras of 1-cyclic perfect complexes.Int. Math. Res. Not. 2021 (2021), 402-425. Zbl 1508.16023, MR 4198500, 10.1093/imrn/rnz151
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo