Previous |  Up |  Next

Article

Title: Linear congruences and a conjecture of Bibak (English)
Author: Babu, Chinnakonda Gnanamoorthy Karthick
Author: Bera, Ranjan
Author: Sury, Balasubramanian
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 4
Year: 2024
Pages: 1185-1206
Summary lang: English
.
Category: math
.
Summary: We address three questions posed by K. Bibak (2020), and generalize some results of K. Bibak, D. N. Lehmer and K. G. Ramanathan on solutions of linear congruences $\sum _{i=1}^k a_i x_i \equiv b \pmod n$. In particular, we obtain explicit expressions for the number of solutions, where $x_i$'s are squares modulo $n$. In addition, we obtain expressions for the number of solutions with order restrictions $x_1 \geq \cdots \geq x_k$ or with strict order restrictions $x_1> \cdots > x_k$ in some special cases. In these results, the expressions for the number of solutions involve Ramanujan sums and are obtained using their properties. (English)
Keyword: system of congruence
Keyword: restricted linear congruence
Keyword: Ramanujan sum
Keyword: discrete Fourier transform
MSC: 11A25
MSC: 11D79
MSC: 11P83
MSC: 11T24
MSC: 11T55
DOI: 10.21136/CMJ.2024.0151-24
.
Date available: 2024-12-15T06:39:17Z
Last updated: 2024-12-16
Stable URL: http://hdl.handle.net/10338.dmlcz/152696
.
Reference: [1] Bibak, K.: Order-restricted linear congruences.Discrete Math. 343 (2020), Article ID 111690, 4 pages. Zbl 1447.11003, MR 4040063, 10.1016/j.disc.2019.111690
Reference: [2] Bibak, K., Kapron, B. M., Srinivasan, V.: Counting surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group with motivations from string theory and QFT.Nucl. Phys., B 910 (2016), 712-723. Zbl 1345.81096, MR 3535838, 10.1016/j.nuclphysb.2016.07.028
Reference: [3] Bibak, K., Kapron, B. M., Srinivasan, V.: Unweighted linear congruences with distinct coordinates and the Varshamov-Tenengolts codes.Des. Codes Cryptography 86 (2018), 1893-1904. Zbl 1411.11035, MR 3816205, 10.1007/s10623-017-0428-3
Reference: [4] Bibak, K., Kapron, B. M., Srinivasan, V.: A generalization of Schönemann's theorem via a graph theoretic method.Discrete Math. 342 (2019), 3057-3061. Zbl 1420.11006, MR 3996744, 10.1016/j.disc.2019.06.016
Reference: [5] Bibak, K., Kapron, B. M., Srinivasan, V., Tauraso, R., Tóth, L.: Restricted linear congruences.J. Number Theory 171 (2017), 128-144. Zbl 1353.11067, MR 3556678, 10.1016/j.jnt.2016.07.018
Reference: [6] Bibak, K., Kapron, B. M., Srinivasan, V., Tóth, L.: On an almost-universal hash function family with applications to authentication and secrecy codes.Int. J. Found. Comput. Sci. 29 (2018), 357-375. Zbl 1391.94730, MR 3799234, 10.1142/S0129054118500089
Reference: [7] Bibak, K., Milenkovic, O.: Explicit formulas for the weight enumerators of some classes of deletion correcting codes.IEEE Trans. Commun. 67 (2019), 1809-1816. 10.1109/TCOMM.2018.2886354
Reference: [8] Brauer, A.: Lösung der Aufgabe 30.Jahresber. Dtsch. Math.-Ver. 35 (1926), 92-94 German \99999JFM99999 52.0139.03.
Reference: [9] Calderón, C., Grau, J. M., Oller-Marcén, A. M., Tóth, L.: Counting invertible sums of squares modulo $n$ and a new generalization of Euler's totient function.Publ. Math. Debr. 87 (2015), 133-145. Zbl 1363.11004, MR 3367916, 10.5486/PMD.2015.7098
Reference: [10] Cheng, Q., Murray, E.: On deciding deep holes of Reed-Solomon codes.Theory and Applications of Models of Computation Lecture Notes in Computer Science 4484. Springer, Berlin (2007), 296-305. Zbl 1198.94189, MR 2374319, 10.1007/978-3-540-72504-6_27
Reference: [11] Cohen, E.: A class of arithmetical functions.Proc. Natl. Acad. Sci. USA 41 (1955), 939-944. Zbl 0066.29203, MR 0075230, 10.1073/pnas.41.11.939
Reference: [12] Dickson, L. E.: History of the Theory of Numbers. II. Diophantine Analysis.Chelsea Publishing, New York (1966). Zbl 1214.11002, MR 0245500
Reference: [13] Grau, J. M., Oller-Marcén, A. M.: Fast computation of the number of solutions to $x_1^2 + \cdots +x_k^2 \equiv \lambda \pmod n$.J. Number Theory 200 (2019), 427-440. Zbl 1418.11056, MR 3944446, 10.1016/j.jnt.2018.09.015
Reference: [14] Grynkiewicz, D. J., Philipp, A., Ponomarenko, V.: Arithmetic-progression-weighted subsequence sums.Isr. J. Math. 193 (2013), 359-398. Zbl 1316.11010, MR 3038556, 10.1007/s11856-012-0119-8
Reference: [15] Gupta, H.: Partitions - a survey.J. Res. Natl. Bur. Stand., Sect. B 74 (1970), 1-29. Zbl 0203.30701, MR 0271055, 10.6028/jres.074B.001
Reference: [16] Hull, R.: The numbers of solutions of congruences involving only $k$th powers.Trans. Am. Math. Soc. 34 (1932), 908-937. Zbl 0005.34501, MR 1501668, 10.1090/S0002-9947-1932-1501668-0
Reference: [17] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory.Graduate Texts in Mathematics 84. Springer, New York (1990). Zbl 0712.11001, MR 1070716, 10.1007/978-1-4757-2103-4
Reference: [18] Jacobson, D., Williams, K. S.: On the number of distinguished representations of a group element.Duke Math. J. 39 (1972), 521-527. Zbl 0248.20018, MR 0302464, 10.1215/S0012-7094-72-03959-2
Reference: [19] Lehmer, D. N.: Certain theorems in the theory of quadratic residues.Am. Math. Mon. 20 (1913), 148-157 \99999JFM99999 44.0248.09. MR 1517830, 10.1080/00029890.1913.11997942
Reference: [20] Li, J., Wan, D.: On the subset sum problem over finite fields.Finite Fields Appl. 14 (2008), 911-929. Zbl 1189.11058, MR 2457537, 10.1016/j.ffa.2008.05.003
Reference: [21] Li, J., Wan, D.: Counting subset sums of finite Abelian groups.J. Comb. Theory, Ser. A 119 (2012), 170-182. Zbl 1229.05289, MR 2844090, 10.1016/j.jcta.2011.07.003
Reference: [22] Li, S., Ouyang, Y.: Counting the solutions of $\lambda_1 x^{k_1}_1 + \dots + \lambda_t x_t^{k_t} \equiv c$ mod $n$.J. Number Theory 187 (2018), 41-65. Zbl 1430.11047, MR 3766901, 10.1016/j.jnt.2017.10.017
Reference: [23] Montgomery, H. L., Vaughan, R. C.: Multiplicative Number Theory. I. Classical Theory.Cambridge Studies in Advanced Mathematics 97. Cambridge University Press, Cambridge (2007). Zbl 1142.11001, MR 2378655, 10.1017/CBO9780511618314
Reference: [24] Nicol, C. A., Vandiver, H. S.: A von Sterneck arithmetical function and restricted partitions with respect to a modulus.Proc. Natl. Acad. Sci. USA 40 (1954), 825-835. Zbl 0056.04001, MR 0063399, 10.1073/pnas.40.9.825
Reference: [25] Rademacher, H.: Über den Vektorenbereich eines konvexen ebenen Bereiches.Jahresber. Dtsch. Math.-Ver. 34 (1925), 64-79 German \99999JFM99999 51.0592.01.
Reference: [26] Ramanathan, K. G.: Some applications of Ramanujan's trigonometrical sum $C_m(n)$.Proc. Indian Acad. Sci., Sect. A 20 (1944), 62-69. Zbl 0063.06402, MR 0011093, 10.1007/BF03048959
Reference: [27] Riordan, J.: Enumerations for permutations in difference form.Proc. Am. Math. Soc. 13 (1962), 107-110. Zbl 0101.25106, MR 148562, 10.1090/S0002-9939-1962-0148562-2
Reference: [28] Schönemann, T.: Theorie der symmetrischen Functionen der Wurzeln einer Gleichung: Allgemeine Sätze über Congruenzen nebst einigen Anwendungen derselben.J. Reine Angew. Math. 19 (1839), 231-243 German. Zbl 019.0617cj, MR 1578210, 10.1515/crll.1839.19.231
Reference: [29] Stangl, W. D.: Counting squares in $\Bbb{Z}_n$.Math. Mag. 69 (1996), 285-289. Zbl 1055.11500, MR 1424442, 10.2307/2690536
Reference: [30] Tóth, L.: Counting solutions of quadratic congruences in several variables revisited.J. Integer Seq. 17 (2014), Article ID 14.11.6, 23 pages. Zbl 1321.11041, MR 3291084
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo