Title: | New bounds on the Laplacian spectral ratio of connected graphs (English) |
Author: | Lin, Zhen |
Author: | Cai, Min |
Author: | Wang, Jiajia |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 74 |
Issue: | 4 |
Year: | 2024 |
Pages: | 1207-1220 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Let $G$ be a simple connected undirected graph. The Laplacian spectral ratio of $G$ is defined as the quotient between the largest and second smallest Laplacian eigenvalues of $G$, which is an important parameter in graph theory and networks. We obtain some bounds of the Laplacian spectral ratio in terms of the number of the spanning trees and the sum of powers of the Laplacian eigenvalues. In addition, we study the extremal Laplacian spectral ratio among trees with $n$ vertices, which improves some known results of Z. You and B. Liu (2012). (English) |
Keyword: | Laplacian eigenvalue |
Keyword: | ratio |
Keyword: | tree |
Keyword: | bound |
MSC: | 05C05 |
MSC: | 05C50 |
DOI: | 10.21136/CMJ.2024.0170-24 |
. | |
Date available: | 2024-12-15T06:39:52Z |
Last updated: | 2024-12-16 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152697 |
. | |
Reference: | [1] Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks.Phys. Rep. 469 (2008), 93-153. MR 2477097, 10.1016/j.physrep.2008.09.002 |
Reference: | [2] Barahona, M., Pecora, L. M.: Synchronization in small-world networks.Phys. Rev. Lett. 89 (2002), Article ID 054101. 10.1103/PhysRevLett.89.054101 |
Reference: | [3] Barrett, W., Evans, E., Hall, H. T., Kempton, M.: New conjectures on algebraic connectivity and the Laplacian spread of graphs.Linear Algebra Appl. 648 (2022), 104-132. Zbl 1490.05154, MR 4419000, 10.1016/j.laa.2022.04.021 |
Reference: | [4] Brouwer, A. E., Haemers, W. H.: Eigenvalues and perfect matchings.Linear Algebra Appl. 395 (2005), 155-162. Zbl 1056.05097, MR 2112881, 10.1016/j.laa.2004.08.014 |
Reference: | [5] Chen, X., Das, K. C.: Some results on the Laplacian spread of a graph.Linear Algebra Appl. 505 (2016), 245-260. Zbl 1338.05158, MR 3506494, 10.1016/j.laa.2016.05.002 |
Reference: | [6] Chvátal, V.: Tough graphs and Hamiltonian circuits.Discrete Math. 5 (1973), 215-228. Zbl 0256.05122, MR 0316301, 10.1016/0012-365X(73)90138-6 |
Reference: | [7] Cirtoaje, V.: The best lower bound depended on two fixed variables for Jensen's inequality with ordered variables.J. Inequal. Appl. 2010 (2010), Article ID 128258, 12 pages. Zbl 1204.26031, MR 2749168, 10.1155/2010/128258 |
Reference: | [8] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra.London Mathematical Society Student Texts 75. Cambridge University Press, Cambridge (2010). Zbl 1211.05002, MR 2571608, 10.1017/CBO9780511801518 |
Reference: | [9] Fiedler, M.: Algebraic connectivity of graphs.Czech. Math. J. 23 (1973), 298-305. Zbl 0265.05119, MR 0318007, 10.21136/CMJ.1973.101168 |
Reference: | [10] Filho, D. F. T., Justel, C. M.: About the type of broom trees.Comput. Appl. Math. 42 (2023), Article ID 364, 12 pages. Zbl 1538.05033, MR 4670565, 10.1007/s40314-023-02497-2 |
Reference: | [11] Furtula, B., Gutman, I.: A forgotten topological index.J. Math. Chem. 53 (2015), 1184-1190. Zbl 1317.05031, MR 3317408, 10.1007/s10910-015-0480-z |
Reference: | [12] Goldberg, F.: Bounding the gap between extremal Laplacian eigenvalues of graphs.Linear Algebra Appl. 416 (2006), 68-74. Zbl 1107.05059, MR 2232920, 10.1016/j.laa.2005.07.007 |
Reference: | [13] Grone, R., Merris, R.: The Laplacian spectrum of a graph. II.SIAM J. Discrete Math. 7 (1994), 221-229. Zbl 0795.05092, MR 1271994, 10.1137/S0895480191222653 |
Reference: | [14] Grone, R., Merris, R., Sunder, V. S.: The Laplacian spectrum of a graph.SIAM J. Matrix Anal. Appl. 11 (1990), 218-238. Zbl 0733.05060, MR 1041245, 10.1137/0611016 |
Reference: | [15] Gu, X., Liu, M.: A tight lower bound on the matching number of graphs via Laplacian eigenvalues.Eur. J. Comb. 101 (2022), Article ID 103468, 8 pages. Zbl 1480.05106, MR 4338938, 10.1016/j.ejc.2021.103468 |
Reference: | [16] Gutman, I., Trinajstić, N.: Graph theory and molecular orbitals: Total $\varphi$-electron energy of alternant hydrocarbons.Chem. Phys. Lett. 17 (1972), 535-538. 10.1016/0009-2614(72)85099-1 |
Reference: | [17] Haemers, W. H.: Interlacing eigenvalues and graphs.Linear Algebra Appl. 226-228 (1995), 593-616. Zbl 0831.05044, MR 1344588, 10.1016/0024-3795(95)00199-2 |
Reference: | [18] Kelmans, A. K.: The properties of the characteristic polynomial of a graph.Cybernetics-in the service of Communism 4 (1967), 27-41 Russian. Zbl 0204.24403, MR 0392633 |
Reference: | [19] Liu, B., Chen, S.: Algebraic conditions for $t$-tough graphs.Czech. Math. J. 60 (2010), 1079-1089. Zbl 1224.05307, MR 2738970, 10.1007/s10587-010-0073-8 |
Reference: | [20] Watson, G. S.: Serial correlation in regression analysis. I.Biometrika 42 (1955), 327-341. Zbl 0068.33201, MR 0073096, 10.1093/biomet/42.3-4.327 |
Reference: | [21] You, Z., Liu, B.: On the Laplacian spectral ratio of connected graphs.Appl. Math. Lett. 25 (2012), 1245-1250. Zbl 1248.05116, MR 2947387, 10.1016/j.aml.2011.09.071 |
Reference: | [22] Zhang, X.-D.: Ordering trees with algebraic connectivity and diameter.Linear Algebra Appl. 427 (2007), 301-312. Zbl 1125.05067, MR 2351361, 10.1016/j.laa.2007.07.018 |
Reference: | [23] Zhou, B.: On sum of powers of the Laplacian eigenvalues of graphs.Linear Algebra Appl. 429 (2008), 2239-2246. Zbl 1144.05325, MR 2446656, 10.1016/j.laa.2008.06.023 |
. |
Fulltext not available (moving wall 24 months)