Previous |  Up |  Next

Article

Title: New bounds on the Laplacian spectral ratio of connected graphs (English)
Author: Lin, Zhen
Author: Cai, Min
Author: Wang, Jiajia
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 4
Year: 2024
Pages: 1207-1220
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a simple connected undirected graph. The Laplacian spectral ratio of $G$ is defined as the quotient between the largest and second smallest Laplacian eigenvalues of $G$, which is an important parameter in graph theory and networks. We obtain some bounds of the Laplacian spectral ratio in terms of the number of the spanning trees and the sum of powers of the Laplacian eigenvalues. In addition, we study the extremal Laplacian spectral ratio among trees with $n$ vertices, which improves some known results of Z. You and B. Liu (2012). (English)
Keyword: Laplacian eigenvalue
Keyword: ratio
Keyword: tree
Keyword: bound
MSC: 05C05
MSC: 05C50
DOI: 10.21136/CMJ.2024.0170-24
.
Date available: 2024-12-15T06:39:52Z
Last updated: 2024-12-16
Stable URL: http://hdl.handle.net/10338.dmlcz/152697
.
Reference: [1] Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks.Phys. Rep. 469 (2008), 93-153. MR 2477097, 10.1016/j.physrep.2008.09.002
Reference: [2] Barahona, M., Pecora, L. M.: Synchronization in small-world networks.Phys. Rev. Lett. 89 (2002), Article ID 054101. 10.1103/PhysRevLett.89.054101
Reference: [3] Barrett, W., Evans, E., Hall, H. T., Kempton, M.: New conjectures on algebraic connectivity and the Laplacian spread of graphs.Linear Algebra Appl. 648 (2022), 104-132. Zbl 1490.05154, MR 4419000, 10.1016/j.laa.2022.04.021
Reference: [4] Brouwer, A. E., Haemers, W. H.: Eigenvalues and perfect matchings.Linear Algebra Appl. 395 (2005), 155-162. Zbl 1056.05097, MR 2112881, 10.1016/j.laa.2004.08.014
Reference: [5] Chen, X., Das, K. C.: Some results on the Laplacian spread of a graph.Linear Algebra Appl. 505 (2016), 245-260. Zbl 1338.05158, MR 3506494, 10.1016/j.laa.2016.05.002
Reference: [6] Chvátal, V.: Tough graphs and Hamiltonian circuits.Discrete Math. 5 (1973), 215-228. Zbl 0256.05122, MR 0316301, 10.1016/0012-365X(73)90138-6
Reference: [7] Cirtoaje, V.: The best lower bound depended on two fixed variables for Jensen's inequality with ordered variables.J. Inequal. Appl. 2010 (2010), Article ID 128258, 12 pages. Zbl 1204.26031, MR 2749168, 10.1155/2010/128258
Reference: [8] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra.London Mathematical Society Student Texts 75. Cambridge University Press, Cambridge (2010). Zbl 1211.05002, MR 2571608, 10.1017/CBO9780511801518
Reference: [9] Fiedler, M.: Algebraic connectivity of graphs.Czech. Math. J. 23 (1973), 298-305. Zbl 0265.05119, MR 0318007, 10.21136/CMJ.1973.101168
Reference: [10] Filho, D. F. T., Justel, C. M.: About the type of broom trees.Comput. Appl. Math. 42 (2023), Article ID 364, 12 pages. Zbl 1538.05033, MR 4670565, 10.1007/s40314-023-02497-2
Reference: [11] Furtula, B., Gutman, I.: A forgotten topological index.J. Math. Chem. 53 (2015), 1184-1190. Zbl 1317.05031, MR 3317408, 10.1007/s10910-015-0480-z
Reference: [12] Goldberg, F.: Bounding the gap between extremal Laplacian eigenvalues of graphs.Linear Algebra Appl. 416 (2006), 68-74. Zbl 1107.05059, MR 2232920, 10.1016/j.laa.2005.07.007
Reference: [13] Grone, R., Merris, R.: The Laplacian spectrum of a graph. II.SIAM J. Discrete Math. 7 (1994), 221-229. Zbl 0795.05092, MR 1271994, 10.1137/S0895480191222653
Reference: [14] Grone, R., Merris, R., Sunder, V. S.: The Laplacian spectrum of a graph.SIAM J. Matrix Anal. Appl. 11 (1990), 218-238. Zbl 0733.05060, MR 1041245, 10.1137/0611016
Reference: [15] Gu, X., Liu, M.: A tight lower bound on the matching number of graphs via Laplacian eigenvalues.Eur. J. Comb. 101 (2022), Article ID 103468, 8 pages. Zbl 1480.05106, MR 4338938, 10.1016/j.ejc.2021.103468
Reference: [16] Gutman, I., Trinajstić, N.: Graph theory and molecular orbitals: Total $\varphi$-electron energy of alternant hydrocarbons.Chem. Phys. Lett. 17 (1972), 535-538. 10.1016/0009-2614(72)85099-1
Reference: [17] Haemers, W. H.: Interlacing eigenvalues and graphs.Linear Algebra Appl. 226-228 (1995), 593-616. Zbl 0831.05044, MR 1344588, 10.1016/0024-3795(95)00199-2
Reference: [18] Kelmans, A. K.: The properties of the characteristic polynomial of a graph.Cybernetics-in the service of Communism 4 (1967), 27-41 Russian. Zbl 0204.24403, MR 0392633
Reference: [19] Liu, B., Chen, S.: Algebraic conditions for $t$-tough graphs.Czech. Math. J. 60 (2010), 1079-1089. Zbl 1224.05307, MR 2738970, 10.1007/s10587-010-0073-8
Reference: [20] Watson, G. S.: Serial correlation in regression analysis. I.Biometrika 42 (1955), 327-341. Zbl 0068.33201, MR 0073096, 10.1093/biomet/42.3-4.327
Reference: [21] You, Z., Liu, B.: On the Laplacian spectral ratio of connected graphs.Appl. Math. Lett. 25 (2012), 1245-1250. Zbl 1248.05116, MR 2947387, 10.1016/j.aml.2011.09.071
Reference: [22] Zhang, X.-D.: Ordering trees with algebraic connectivity and diameter.Linear Algebra Appl. 427 (2007), 301-312. Zbl 1125.05067, MR 2351361, 10.1016/j.laa.2007.07.018
Reference: [23] Zhou, B.: On sum of powers of the Laplacian eigenvalues of graphs.Linear Algebra Appl. 429 (2008), 2239-2246. Zbl 1144.05325, MR 2446656, 10.1016/j.laa.2008.06.023
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo