Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Stević-Sharma operator; Fock space; $\mathcal {J}$-symmetry
Summary:
Let $\varphi $ be an entire self-map of $\mathbb {C}^N$, $u_0$ be an entire function on $\mathbb {C}^N$ and ${\bf u}=(u_1,\cdots ,u_N)$ be a vector-valued entire function on $\mathbb {C}^N$. We extend the Stević-Sharma type operator to the classcial Fock spaces, by defining an operator $T_{u_0,{\bf u},\varphi }$ as follows: $$\openup -.4pt T_{u_0,{\bf u},\varphi }f=u_0\cdot f\circ \varphi +\sum _{i=1}^Nu_i\cdot \frac {\partial f}{\partial z_i}\circ \varphi . $$ We investigate the boundedness and compactness of $T_{u_0,{\bf u},\varphi }$ on Fock spaces. The complex symmetry and self-adjointness of $T_{u_0,{\bf u},\varphi }$ are also characterized.
References:
[1] Arroussi, H., Tong, C.: Weighted composition operators between large Fock spaces in several complex variables. J. Funct. Anal. 277 (2019), 3436-3466. DOI 10.1016/j.jfa.2019.04.008 | MR 4001076 | Zbl 1429.32011
[2] Carswell, B., MacCluer, B., Schuster, A.: Composition operators on the Fock space. Acta Sci. Math. 69 (2003), 871-887. MR 2034214 | Zbl 1051.47023
[3] Chen, R.-Y., Yang, Z.-C., Zhou, Z.-H.: Unitary, self-adjointness and $\mathcal{J}$-symmetric weighted composition operators on Fock-Sobolev spaces. Oper. Matrices 16 (2022), 1139-1154. DOI 10.7153/oam-2022-16-74 | MR 4543382 | Zbl 1515.30124
[4] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995). DOI 10.1201/9781315139920 | MR 1397026 | Zbl 0873.47017
[5] Garcia, S. R., Putinar, M.: Complex symmetric operators and applications. Trans. Am. Math. Soc. 358 (2006), 1285-1315. DOI 10.1090/S0002-9947-05-03742-6 | MR 2187654 | Zbl 1087.30031
[6] Hai, P. V., Khoi, L. H.: Complex symmetry of weighted composition operators on the Fock space. J. Math. Anal. Appl. 433 (2016), 1757-1771. DOI 10.1016/j.jmaa.2015.08.069 | MR 3398790 | Zbl 1325.47057
[7] Hai, P. V., Khoi, L. H.: Complex symmetric weighted composition operators on the Fock space in several variables. Complex Var. Elliptic Equ. 63 (2018), 391-405. DOI 10.1080/17476933.2017.1315108 | MR 3764769 | Zbl 1390.32001
[8] Han, K., Wang, M.: Weighted composition operators on the Fock space. Sci. China, Math. 65 (2022), 111-126. DOI 10.1007/s11425-020-1752-0 | MR 4361970 | Zbl 07462121
[9] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge (2013). DOI 10.1017/CBO9780511810817 | MR 2978290 | Zbl 1267.15001
[10] Hu, J., Li, S., Ou, D.: Embedding derivatives of Fock spaces and generalized weighted composition operators. J. Nonlinear Var. Anal. 5 (2021), 589-613. Zbl 1519.47041
[11] Hu, X., Yang, Z., Zhou, Z.: Complex symmetric weighted composition operators on Dirichlet spaces and Hardy spaces in the unit ball. Int. J. Math. 31 (2020), Article ID 2050006, 21 pages. DOI 10.1142/S0129167X20500068 | MR 4060570 | Zbl 1513.47048
[12] Hu, Z.: Equivalent norms on Fock spaces with some application to extended Cesàro operators. Proc. Am. Math. Soc. 141 (2013), 2829-2840. DOI 10.1090/S0002-9939-2013-11550-9 | MR 3056573 | Zbl 1272.32003
[13] Hu, Z., Lv, X.: Toeplitz operators from one Fock space to another. Integral Equations Oper. Theory 70 (2011), 541-559. DOI 10.1007/s00020-011-1887-y | MR 2819157 | Zbl 1262.47044
[14] Janson, S., Peetre, J., Rochberg, R.: Hankel forms and the Fock space. Rev. Math. Iberoam. 3 (1987), 61-138. DOI 10.4171/RMI/46 | MR 1008445 | Zbl 0704.47022
[15] Le, T.: Normal and isometric weighted composition operators on Fock space. Bull. Lond. Math. Soc. 46 (2014), 847-856. DOI 10.1112/blms/bdu046 | MR 3239622 | Zbl 1298.47049
[16] Liu, Y., Yu, Y.: Products of composition, multiplication and radial derivative operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball. J. Math. Anal. Appl. 423 (2015), 76-93. DOI 10.1016/j.jmaa.2014.09.069 | MR 3273168 | Zbl 1304.47046
[17] Malhotra, A., Gupta, A.: Complex symmetry of generalized weighted composition operators on Fock space. J. Math. Anal. Appl. 495 (2021), Article ID 124740, 12 pages. DOI 10.1016/j.jmaa.2020.124740 | MR 4182951 | Zbl 1461.30126
[18] Shapiro, J. H.: Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics. Springer, New York (1993). DOI 10.1007/978-1-4612-0887-7 | MR 1237406 | Zbl 0791.30033
[19] Sharma, A. K.: Products of multiplication, composition and differentiation between weighted Bergman-Nevanlinna and Bloch-type spaces. Turk. J. Math. 35 (2011), 275-291. DOI 10.3906/mat-0806-24 | MR 2839722 | Zbl 1236.47025
[20] Stević, S.: Weighted composition operators between Fock-type spaces in $\Bbb{C}^N$. Appl. Math. Comput. 215 (2009), 2750-2760. DOI 10.1016/j.amc.2009.09.016 | MR 2563487 | Zbl 1186.32003
[21] Stević, S.: Weighted differentiation composition operators from mixed-norm spaces to weighted-type spaces. Appl. Math. Comput. 211 (2009), 222-233. DOI 10.1016/j.amc.2009.01.061 | MR 2517681 | Zbl 1165.30029
[22] Stević, S.: Weighted iterated radial composition operators between some spaces of holomorphic functions on the unit ball. Abstr. Appl. Anal. 2010 (2020), Article ID 801264, 14 pages. DOI 10.1155/2010/801264 | MR 2739686 | Zbl 1207.47022
[23] Stević, S.: On a new product-type operator on the unit ball. J. Math. Inequal. 16 (2022), 1675-1692. DOI 10.7153/jmi-2022-16-109 | MR 4532711 | Zbl 1521.47070
[24] Stević, S.: Norm of the general polynomial differentiation composition operator from the space of Cauchy transforms to the $m$th weighted-type space on the unit disk. Math. Methods Appl. Sci. 47 (2024), 3893-3902. DOI 10.1002/mma.9681 | MR 4730471 | Zbl 07861229
[25] Stević, S., Huang, C.-S., Jiang, Z.-J.: Sum of some product-type operators from Hardy spaces to weighted-type spaces on the unit ball. Math. Methods Appl. Sci. 45 (2022), 11581-11600. DOI 10.1002/mma.8467 | MR 4509893 | Zbl 07812790
[26] Stević, S., Sharma, A. K.: On a product-type operator between Hardy and $\alpha$-Bloch spaces of the upper half-plane. J. Inequal. Appl. 2018 (2018), Article ID 273, 18 pages. DOI 10.1186/s13660-018-1867-8 | MR 3863081 | Zbl 1506.47057
[27] Stević, S., Sharma, A. K., Bhat, A.: Essential norm of products of multiplication composition and differentiation operators on weighted Bergman spaces. Appl. Math. Comput. 218 (2011), 2386-2397. DOI 10.1016/j.amc.2011.06.055 | MR 2838149 | Zbl 1244.30080
[28] Stević, S., Sharma, A. K., Bhat, A.: Products of multiplication composition and differentiation operators on weighted Bergman spaces. Appl. Math. Comput. 217 (2011), 8115-8125. DOI 10.1016/j.amc.2011.03.014 | MR 2802222 | Zbl 1218.30152
[29] Stević, S., Sharma, A. K., Krisham, R.: Boundedness and compactness of a new product-type operator from a general space to Bloch-type spaces. J. Inequal. Appl. 2016 (2016), Article ID 219, 32 pages. DOI 10.1186/s13660-016-1159-0 | MR 3546586 | Zbl 1353.47065
[30] Tien, P. T., Khoi, L. H.: Differences of weighted composition operators between the Fock spaces. Monatsh. Math. 188 (2019), 183-193. DOI 10.1007/s00605-018-1179-6 | MR 3895397 | Zbl 1508.47051
[31] Tien, P. T., Khoi, L. H.: Weighted composition operators between different Fock spaces. Potential Anal. 50 (2019), 171-195. DOI 10.1007/s11118-017-9678-y | MR 3905527 | Zbl 1411.30040
[32] Tien, P. T., Khoi, L. H.: Weighted composition operators between Fock spaces in several variables. Math. Nachr. 293 (2020), 1200-1220. DOI 10.1002/mana.201800197 | MR 4107990 | Zbl 07261550
[33] Ueki, S.-I.: Hilbert-Schmidt weighted composition operator on the Fock space. Int. J. Math. Anal., Ruse 1 (2007), 769-774. MR 2370212 | Zbl 1160.47306
[34] Ueki, S.-I.: Weighted composition operator on the Fock space. Proc. Am. Math. Soc. 135 (2007), 1405-1410. DOI 10.1090/S0002-9939-06-08605-9 | MR 2276649 | Zbl 1126.47026
[35] Ueki, S.-I.: Weighted composition operators on some function spaces of entire functions. Bull. Belg. Math. Soc. - Simon Stevin 17 (2010), 343-353. DOI 10.36045/bbms/1274896210 | MR 2663477 | Zbl 1191.47032
[36] Wallstén, R.: The $S^p$-criterion for Hankel forms on the Fock space, $0. Math. Scand. 64 (1989), 123-132. DOI 10.7146/math.scand.a-12251 | MR 1036432 | Zbl 0722.47025
[37] Wang, S., Wang, M., Guo, X.: Differences of Stević-Sharma operators. Banach J. Math. Anal. 14 (2020), 1019-1054. DOI 10.1007/s43037-019-00051-z | MR 4123322 | Zbl 1508.47088
[38] Wang, S., Wang, M., Guo, X.: Products of composition, multiplication and radial derivative operators between Banach spaces of holomorphic functions on the unit ball. Complex Var. Elliptic Equ. 65 (2020), 2026-2055. DOI 10.1080/17476933.2019.1687455 | MR 4170195 | Zbl 1523.47041
[39] Zhao, L.: Invertible weighted composition operators on Fock space on $\Bbb{C}^N$. J. Funct. Spaces 2015 (2015), Article ID 250358, 5 pages. DOI 10.1155/2015/250358 | MR 3361112 | Zbl 1321.47065
[40] Zhu, K.: Analysis on Fock Spaces. Graduate Texts in Mathematics 263. Springer, New York (2012). DOI 10.1007/978-1-4419-8801-0 | MR 2934601 | Zbl 1262.30003
[41] Zhu, X.: Generalized weighted composition operators on weighted Bergman spaces. Numer. Funct. Anal. Optim. 30 (2009), 881-893. DOI 10.1080/01630560903123163 | MR 2555666 | Zbl 1183.47030
Partner of
EuDML logo