Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
cusp form; Dedekind zeta-function; $L$-function
Summary:
Let $K/\mathbb {Q}$ be a nonnormal cubic extension which is given by an irreducible polynomial $g(x)=x^3+a x^2+b x+c$. Denote by $\zeta _{K}(s)$ the Dedekind zeta-function of the field $K$ and $a_K(n)$ the number of integral ideals in $K$ with norm $n$. In this note, by the higher integral mean values and subconvexity bound of automorphic $L$-functions, the second and third moment of $a_K(n)$ is considered, i.e., $$ \sum _{n\leq x}a_K^2(n)=x P_1(\log x)+O(x^{5/7+\epsilon }),\quad \sum _{n\leq x}a_K^3(n)=x P_4(\log x)+O(X^{321/356+\epsilon }), $$ where $P_1(t)$, $P_4(t)$ are polynomials of degree 1, 4, respectively, $\epsilon >0$ is an arbitrarily small number.
References:
[1] Bourgain, J.: Decoupling, exponential sums and the Riemann zeta function. J. Am. Math. Soc. 30 (2017), 205-224. DOI 10.1090/jams/860 | MR 3556291 | Zbl 1352.11065
[2] Chakraborty, K., Krishnamoorthy, K.: On moments of non-normal number fields. J. Number Theory 238 (2022), 183-196. DOI 10.1016/j.jnt.2021.08.008 | MR 4430097 | Zbl 1505.11076
[3] Fomenko, O. M.: Mean values associated with the Dedekind zeta function. J. Math. Sci. (N.Y.) 150 (2008), 2115-2122. DOI 10.1007/s10958-008-0126-9 | MR 2722976
[4] Good, A.: The square mean of Dirichlet series associated with cusp forms. Mathematika 29 (1982), 278-295. DOI 10.1112/S0025579300012377 | MR 0696884 | Zbl 0497.10016
[5] Ivić, A.: The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications. John Wiley & Sohns, New York (1985). MR 792089 | Zbl 0556.10026
[6] Ivić, A.: On zeta-functions associated with Fourier coefficients of cusp forms. Proceedings of the Amalfi Conference on Analytic Number Theory Universitá di Salerno, Salermo (1992), 231-246. MR 1220467 | Zbl 0787.11035
[7] Jutila, M.: Lectures on a Method in the Theory of Exponential Sums. Lectures on Mathematics and Physics. Mathematics. Tata Institute of Fundamental Research 80. Springer, Berlin (1987). MR 0910497 | Zbl 0671.10031
[8] Kim, H. H.: Functoriality and number of solutions of congruences. Acta Arith. 128 (2007), 235-243. DOI 10.4064/aa128-3-4 | MR 2313992 | Zbl 1135.11051
[9] Lin, Y., Nunes, R., Qi, Z.: Strong subconvexity for self-dual GL(3) $L$-functions. Int. Math. Res. Not. 2023 (2023), 11453-11470. DOI 10.1093/imrn/rnac153 | MR 4609788 | Zbl 1541.11046
[10] Liu, H., Li, S., Zhang, D.: Power moments of automorphic $L$-function attached to Maass forms. Int. J. Number Theory 12 (2016), 427-443. DOI 10.1142/S1793042116500251 | MR 3461440 | Zbl 1335.11031
[11] Liu, H.: Mean value estimates related to the Dedekind zeta-function. Proc. Indian Acad. Sci., Math. Sci. 131 (2021), Article ID 48, 10 pages. DOI 10.1007/s12044-021-00648-1 | MR 4344605 | Zbl 1478.11112
[12] Lü, G.: Mean values connected with the Dedekind zeta-function of a non-normal cubic field. Cent. Eur. J. Math. 11 (2013), 274-282. DOI 10.2478/s11533-012-0133-4 | MR 3000644 | Zbl 1292.11108
Partner of
EuDML logo