Previous |  Up |  Next

Article

Title: Are zero-symmetric simple nearrings with identity equiprime? (English)
Author: Ke, Wen-Fong
Author: Meyer, Johannes H.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 4
Year: 2024
Pages: 1289-1298
Summary lang: English
.
Category: math
.
Summary: We show that there exist zero-symmetric simple nearrings with identity, which are not equiprime, solving a longstanding open problem. (English)
Keyword: nearring with identity
Keyword: infinite simple group
Keyword: HNN extension
Keyword: equiprime nearring
Keyword: prime radical
MSC: 16N60
MSC: 16N80
MSC: 16Y30
MSC: 20E06
MSC: 20E32
DOI: 10.21136/CMJ.2024.0302-24
.
Date available: 2024-12-15T06:42:23Z
Last updated: 2024-12-16
Stable URL: http://hdl.handle.net/10338.dmlcz/152702
.
Reference: [1] Booth, G. L., Groenewald, N. J., Veldsman, S. A.: A Kurosh-Amitsur prime radical for near-rings.Commun. Algebra 18 (1990), 3111-3122. Zbl 0706.16025, MR 1063353, 10.1080/00927879008824063
Reference: [2] Clay, J. R.: The near-rings on groups of low order.Math. Z. 104 (1968), 364-371. Zbl 0153.35704, MR 0224659, 10.1007/BF01110428
Reference: [3] Divinsky, N. J.: Rings and Radicals.Mathematical Expositions 14. University of Toronto Press, Toronto (1965). Zbl 0138.26303, MR 0197489
Reference: [4] Higman, G., Neumann, B. H., Neumann, H.: Embedding theorems for groups.J. Lond. Math. Soc. 24 (1949), 247-254. Zbl 0034.30101, MR 0032641, 10.1112/jlms/s1-24.4.247
Reference: [5] Kaarli, K., Kriis, T.: Prime radical of near-rings.Tartu Riikl. Ül. Toimetised 764 (1987), 23-29 Russian. Zbl 0638.16028, MR 0913699
Reference: [6] Ke, W.-F., Meyer, J. H., Pilz, G. F., Wendt, G.: On zero-symmetric nearrings with identity whose additive groups are simple.Czech. Math. J. 74 (2024), 869-880. MR 4804964, 10.21136/CMJ.2024.0086-24
Reference: [7] Meyer, J. H.: Matrix Near-Rings: Ph. D. Thesis.University of Stellenbosch, Stellenbosch (1986).
Reference: [8] Pilz, G.: Near-Rings: The Theory and Its Applications.North-Holland Mathematics Studies 23. North-Holland, Amsterdam (1983). Zbl 0521.16028, MR 0721171, 10.1016/s0304-0208(08)x7135-x
Reference: [9] Veldsman, S.: On equiprime near-rings.Commun. Algebra 20 (1992), 2569-2587. Zbl 0795.16034, MR 1176828, 10.1080/00927879208824479
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo