Title: | Sufficient conditions on the existence of factors in graphs involving minimum degree (English) |
Author: | Jia, Huicai |
Author: | Lou, Jing |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 74 |
Issue: | 4 |
Year: | 2024 |
Pages: | 1299-1311 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | For a set $\{A, B, C, \ldots \}$ of graphs, an $\{A, B, C, \ldots \}$-factor of a graph $G$ is a spanning subgraph $F$ of $G$, where each component of $F$ is contained in $\{A, B, C, \ldots \}$. It is very interesting to investigate the existence of factors in a graph with given minimum degree from the prospective of eigenvalues. We first propose a tight sufficient condition in terms of the $Q$-spectral radius for a graph involving minimum degree to contain a star factor. Moreover, we also present tight sufficient conditions based on the $Q$-spectral radius and the distance spectral radius for a graph involving minimum degree to guarantee the existence of a $\{K_2, \{C_k\}\}$-factor, respectively. (English) |
Keyword: | factor |
Keyword: | $Q$-spectral radius |
Keyword: | distance spectral radius |
Keyword: | minimum degree |
MSC: | 05C35 |
MSC: | 05C50 |
DOI: | 10.21136/CMJ.2024.0304-24 |
. | |
Date available: | 2024-12-15T06:42:52Z |
Last updated: | 2024-12-16 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152703 |
. | |
Reference: | [1] Akiyama, J., Avis, D., Era, H.: On a $\{1,2\}$-factor of a graph.TRU Math. 16 (1980), 97-102. Zbl 0461.05047, MR 0616992 |
Reference: | [2] Amahashi, A., Kano, M.: On factors with given components.Discrete Math. 42 (1982), 1-6. Zbl 0525.05048, MR 0677033, 10.1016/0012-365X(82)90048-6 |
Reference: | [3] Ao, G., Liu, R., Yuan, J.: Spectral radius and spanning trees of graphs.Discrete Math. 346 (2023), Article ID 113400, 9 pages. Zbl 1521.05096, MR 4559344, 10.1016/j.disc.2023.113400 |
Reference: | [4] Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences.Computer Science and Applied Mathematics. Academic Press, New York (1979). Zbl 0484.15016, MR 0544666, 10.1137/1.9781611971262 |
Reference: | [5] Bondy, J. A., Murty, U. S. R.: Graph Theory.Graduate Texts in Mathematics 244. Springer, New York (2008). Zbl 1134.05001, MR 2368647, 10.1007/978-1-84628-970-5 |
Reference: | [6] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs.Universitext. Springer, Berlin (2012). Zbl 1231.05001, MR 2882891, 10.1007/978-1-4614-1939-6 |
Reference: | [7] Fan, D., Lin, H.: Binding number, $k$-factor and spectral radius of graphs.Electron. J. Comb. 31 (2024), Article ID P1.30, 26 pages. Zbl 1533.05157, MR 4703260, 10.37236/12165 |
Reference: | [8] Fan, D., Lin, H., Lu, H.: Spectral radius and $[a,b]$-factors in graphs.Discrete Math. 345 (2022), Article ID 112892, 9 pages. Zbl 1489.05094, MR 4400004, 10.1016/j.disc.2022.112892 |
Reference: | [9] Fan, A., Liu, R., Ao, G.: Spectral radius, fractional $[a,b]$-factor and ID-factor-critical graphs.Discrete Math. 347 (2024), Article ID 113976, 12 pages. Zbl 1539.05074, MR 4720492, 10.1016/j.disc.2024.113976 |
Reference: | [10] Godsil, C. D.: Algebraic Combinatorics.Chapman and Hall Mathematics. Chapman & Hall, New York (1993). Zbl 0784.05001, MR 1220704, 10.1201/9781315137131 |
Reference: | [11] Godsil, C., Royle, G.: Algebraic Graph Theory.Graduate Texts in Mathematics 207. Springer, New York (2001). Zbl 0968.05002, MR 1829620, 10.1007/978-1-4613-0163-9 |
Reference: | [12] Haemers, W. H.: Interlacing eigenvalues and graphs.Linear Algebra Appl. 226-228 (1995), 593-616. Zbl 0831.05044, MR 1344588, 10.1016/0024-3795(95)00199-2 |
Reference: | [13] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press, Cambridge (1985). Zbl 0576.15001, MR 0832183, 10.1017/CBO9780511810817 |
Reference: | [14] Lou, J., Liu, R., Ao, G.: Fractional matching, factors and spectral radius in graphs involving minimum degree.Linear Algebra Appl. 677 (2023), 337-351. Zbl 1521.05105, MR 4637628, 10.1016/j.laa.2023.08.010 |
Reference: | [15] Miao, S., Li, S.: Characterizing star factors via the size, the spectral radius or the distance spectral radius of graphs.Discrete Appl. Math. 326 (2023), 17-32. Zbl 1504.05176, MR 4517408, 10.1016/j.dam.2022.11.006 |
Reference: | [16] Tutte, W. T.: The factors of graphs.Can. J. Math. 4 (1952), 314-328. Zbl 0049.24202, MR 0048775, 10.4153/CJM-1952-028-2 |
. |
Fulltext not available (moving wall 24 months)