Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
factor; $Q$-spectral radius; distance spectral radius; minimum degree
Summary:
For a set $\{A, B, C, \ldots \}$ of graphs, an $\{A, B, C, \ldots \}$-factor of a graph $G$ is a spanning subgraph $F$ of $G$, where each component of $F$ is contained in $\{A, B, C, \ldots \}$. It is very interesting to investigate the existence of factors in a graph with given minimum degree from the prospective of eigenvalues. We first propose a tight sufficient condition in terms of the $Q$-spectral radius for a graph involving minimum degree to contain a star factor. Moreover, we also present tight sufficient conditions based on the $Q$-spectral radius and the distance spectral radius for a graph involving minimum degree to guarantee the existence of a $\{K_2, \{C_k\}\}$-factor, respectively.
References:
[1] Akiyama, J., Avis, D., Era, H.: On a $\{1,2\}$-factor of a graph. TRU Math. 16 (1980), 97-102. MR 0616992 | Zbl 0461.05047
[2] Amahashi, A., Kano, M.: On factors with given components. Discrete Math. 42 (1982), 1-6. DOI 10.1016/0012-365X(82)90048-6 | MR 0677033 | Zbl 0525.05048
[3] Ao, G., Liu, R., Yuan, J.: Spectral radius and spanning trees of graphs. Discrete Math. 346 (2023), Article ID 113400, 9 pages. DOI 10.1016/j.disc.2023.113400 | MR 4559344 | Zbl 1521.05096
[4] Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences. Computer Science and Applied Mathematics. Academic Press, New York (1979). DOI 10.1137/1.9781611971262 | MR 0544666 | Zbl 0484.15016
[5] Bondy, J. A., Murty, U. S. R.: Graph Theory. Graduate Texts in Mathematics 244. Springer, New York (2008). DOI 10.1007/978-1-84628-970-5 | MR 2368647 | Zbl 1134.05001
[6] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs. Universitext. Springer, Berlin (2012). DOI 10.1007/978-1-4614-1939-6 | MR 2882891 | Zbl 1231.05001
[7] Fan, D., Lin, H.: Binding number, $k$-factor and spectral radius of graphs. Electron. J. Comb. 31 (2024), Article ID P1.30, 26 pages. DOI 10.37236/12165 | MR 4703260 | Zbl 1533.05157
[8] Fan, D., Lin, H., Lu, H.: Spectral radius and $[a,b]$-factors in graphs. Discrete Math. 345 (2022), Article ID 112892, 9 pages. DOI 10.1016/j.disc.2022.112892 | MR 4400004 | Zbl 1489.05094
[9] Fan, A., Liu, R., Ao, G.: Spectral radius, fractional $[a,b]$-factor and ID-factor-critical graphs. Discrete Math. 347 (2024), Article ID 113976, 12 pages. DOI 10.1016/j.disc.2024.113976 | MR 4720492 | Zbl 1539.05074
[10] Godsil, C. D.: Algebraic Combinatorics. Chapman and Hall Mathematics. Chapman & Hall, New York (1993). DOI 10.1201/9781315137131 | MR 1220704 | Zbl 0784.05001
[11] Godsil, C., Royle, G.: Algebraic Graph Theory. Graduate Texts in Mathematics 207. Springer, New York (2001). DOI 10.1007/978-1-4613-0163-9 | MR 1829620 | Zbl 0968.05002
[12] Haemers, W. H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226-228 (1995), 593-616. DOI 10.1016/0024-3795(95)00199-2 | MR 1344588 | Zbl 0831.05044
[13] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge (1985). DOI 10.1017/CBO9780511810817 | MR 0832183 | Zbl 0576.15001
[14] Lou, J., Liu, R., Ao, G.: Fractional matching, factors and spectral radius in graphs involving minimum degree. Linear Algebra Appl. 677 (2023), 337-351. DOI 10.1016/j.laa.2023.08.010 | MR 4637628 | Zbl 1521.05105
[15] Miao, S., Li, S.: Characterizing star factors via the size, the spectral radius or the distance spectral radius of graphs. Discrete Appl. Math. 326 (2023), 17-32. DOI 10.1016/j.dam.2022.11.006 | MR 4517408 | Zbl 1504.05176
[16] Tutte, W. T.: The factors of graphs. Can. J. Math. 4 (1952), 314-328. DOI 10.4153/CJM-1952-028-2 | MR 0048775 | Zbl 0049.24202
Partner of
EuDML logo