[1] Rombach, R., Blattmann, A., al., D. Lorenz et:
High-resolution image synthesis with latent diffusion models. In: Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 2022, pp. 10684-10695.
DOI
[2] Hou, J., Asghar, Z.:
World's first on-device demonstration of stable diffusion on an android phone. Qualcomm 24 (2023).
DOI
[3] Sarokin, Y. H. Chenm R., al., J. Lee et:
Speed is all you need: On-device acceleration of large diffusion models via gpu-aware optimizations. In: Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023. pp. 4651-4655.
DOI
[4] Shang, Y., al., Z. Yuan et:
Post-training quantization on diffusion models. In: Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023. pp. 1972-1981.
DOI
[5] Li, X., Liu, Y., al., L. Lian et:
Q-diffusion: Quantizing diffusion models. In: Proc. IEEE/CVF International Conference on Computer Vision 2023: pp. 17535-17545.
DOI
[6] Ma, X., Fang, G., X.Wang: Llm-pruner: On the structural pruning of large language models. Adv. Neural Inform. Process. Systems 36 (2023), 21702-21720.
[7] Li, Y., Yuan, G., al., Y. Wen et: Efficientformer: Vision transformers at mobilenet speed. Adv. Neural Inform. Process. Systems 35 (2022), 12934-12949.
[8] Sohl-Dickstein, J., Weiss, E., al., N. Maheswaranathan et: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning PMLR, 2015, pp. 2256-2265.
[9] Song, Jiaming, Meng, Chenlin, Ermon, Stefano:
Denoising diffusion implicit models. 2020. In: arXiv preprint:
DOI
[10] Jain, S. M.:
Hugging face. Introduction to transformers for NLP: With the hugging face library and models to solve problems. Apress, Berkeley 2022, 51-67.
DOI
[11] Ronneberger, O., Fischer, P., U-net, T. Brox: Convolutional networks for biomedical image segmentation. Medical image computing and computer-assisted interventional MICCAI 2015. In: Proc. 18th international conference, Munich 2015, part III 18. Springer International Publishing, pp. 234-241.
[12] Lin, T. Y., Maire, M., al., S. Belongie et: Microsoft coco: Common objects in context. Computer Vision'ECCV 2014. In: Proc. 13th European Conference, Zurich 2014, Part V 13. Springer International Publishing 2014, pp. 740-755.
[13] Nichol, A. Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: International Conference on Machine Learning, PMLR 2021, pp. 8162-8171.