Previous |  Up |  Next

Article

Title: Global well-posedness and energy decay for a one dimensional porous-elastic system subject to a neutral delay (English)
Author: Khochemane, Houssem Eddine
Author: Labidi, Sara
Author: Loucif, Sami
Author: Djebabla, Abdelhak
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 150
Issue: 1
Year: 2025
Pages: 109-138
Summary lang: English
.
Category: math
.
Summary: We consider a one-dimensional porous-elastic system with porous-viscosity and a distributed delay of neutral type. First, we prove the global existence and uniqueness of the solution by using the Faedo-Galerkin approximations along with some energy estimates. Then, based on the energy method with some appropriate assumptions on the kernel of neutral delay term, we construct a suitable Lyapunov functional and we prove that, despite of the destructive nature of delays in general, the damping mechanism considered provokes an exponential decay of the solution for the case of equal speed of wave propagation. In the case of lack of exponential stability, we show that the solution decays polynomially. (English)
Keyword: exponential decay
Keyword: polynomial decay
Keyword: porous-elastic system
Keyword: neutral delay
Keyword: multipliers method
Keyword: Faedo-Galerkin approximations
MSC: 35B40
MSC: 35L70
MSC: 74D05
MSC: 93D15
MSC: 93D20
DOI: 10.21136/MB.2024.0104-23
.
Date available: 2025-02-20T16:11:37Z
Last updated: 2025-02-20
Stable URL: http://hdl.handle.net/10338.dmlcz/152879
.
Reference: [1] Apalara, T. A.: Exponential decay in one-dimensional porous dissipation elasticity.Q. J. Mech. Appl. Math. 70 (2017), 363-372. Zbl 1423.35033, MR 1423.35033, 10.1093/qjmam/hbx012
Reference: [2] Apalara, T. A.: Corrigendum to: "Exponential decay in one-dimensional porous dissipation elasticity".Q. J. Mech. Appl. Math. 70 (2017), 553-555. Zbl 1465.35053, MR 3737355, 10.1093/qjmam/hbx027
Reference: [3] Apalara, T. A.: A general decay for a weakly nonlinearly damped porous system.J. Dyn. Control Syst. 25 (2019), 311-322. Zbl 1415.35257, MR 3953144, 10.1007/s10883-018-9407-x
Reference: [4] Apalara, T. A.: General decay of solutions in one-dimensional porous-elastic system with memory.J. Math. Anal. Appl. 469 (2019), 457-471. Zbl 1402.35042, MR 3860432, 10.1016/j.jmaa.2017.08.007
Reference: [5] Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models.Applied Mathematical Sciences 183. Springer, New York (2013). Zbl 1286.76005, MR 2986590, 10.1007/978-1-4614-5975-0
Reference: [6] Casas, P. S., Quintanilla, R.: Exponential decay in one-dimensional porous-thermo-elasticity.Mech. Res. Commun. 32 (2005), 652-658. Zbl 1192.74156, MR 2158183, 10.1016/j.mechrescom.2005.02.015
Reference: [7] Casas, P. S., Quintanilla, R.: Exponential stability in thermoelasticity with microtemperatures.Int. J. Eng. Sci. 43 (2005), 33-47. Zbl 1211.74060, MR 2112810, 10.1016/j.ijengsci.2004.09.004
Reference: [8] Choucha, A., Boulaaras, S. M., Ouchenane, D., Cherif, B. B., Abdalla, M.: Exponential stability of swelling porous elastic with a viscoelastic damping and distributed delay term.J. Funct. Spaces 2021 (2021), Article ID 5581634, 8 pages. Zbl 1462.35073, MR 4225540, 10.1155/2021/5581634
Reference: [9] Choucha, A., Ouchenane, D., Zennir, K.: General decay of solutions in one-dimensional porous-elastic with memory and distributed delay term.Tamkang J. Math. 52 (2021), 479-495. Zbl 1483.35027, MR 4334409, 10.5556/j.tkjm.52.2021.3519
Reference: [10] Datko, R.: Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks.SIAM J. Control Optim. 26 (1988), 697-713. Zbl 0643.93050, MR 0937679, 10.1137/0326040
Reference: [11] Datko, R., Lagnese, J., Polis, M. P.: An example on the effect of time delays in boundary feedback stabilization of wave equations.SIAM J. Control Optim. 24 (1986), 152-156. Zbl 0592.93047, MR 0818942, 10.1137/032400
Reference: [12] Driver, R. D.: A mixed neutral system.Nonlinear Anal., Theory Methods Appl. 8 (1984), 155-158. Zbl 0553.34042, MR 0734448, 10.1016/0362-546X(84)90066-X
Reference: [13] Driver, R. D.: A neutral system with state-dependent delays.Trends in Theory and Practice of Nonlinear Differential Equations Lecture Notes in Pure and Applied Mathematics 90. Marcel Dekker, Basel (1984), 157-161. Zbl 0543.34053, MR 0741499
Reference: [14] Fareh, A., Messaoudi, S. A.: Energy decay for a porous thermoelastic system with thermoelasticity of second sound and with a non-necessary positive definite energy.Appl. Math. Comput. 293 (2017), 493-507. Zbl 1411.74023, MR 3549686, 10.1016/j.amc.2016.08.040
Reference: [15] Feng, B.: Global well-posedness and stability for a viscoelastic plate equation with a time delay.Math. Probl. Eng. 2015 (2015), Article ID 585021, 10 pages. Zbl 1394.35535, MR 3335470, 10.1155/2015/585021
Reference: [16] Foughali, F., Zitouni, S., Bouzettouta, L., Khochemane, H. E.: Well-posedness and general decay for a porous-elastic system with microtemperatures effects and time-varying delay term.Z. Angew. Math. Phys. 73 (2022), Artile ID 183, 31 pages. Zbl 1495.35031, MR 4462689, 10.1007/s00033-022-01801-0
Reference: [17] Goodman, M. A., Cowin, S. C.: A continuum theory for granular materials.Arch. Ration. Mech. Anal. 44 (1972), 249-266. Zbl 0243.76005, MR 1553563, 10.1007/BF00284326
Reference: [18] Guesmia, A.: Well-posedness and exponential stability of an abstract evolution equation with infinite memory and time delay.IMA J. Math. Control Inf. 30 (2013), 507-526. Zbl 1279.93090, MR 3144921, 10.1093/imamci/dns039
Reference: [19] Morales, M. E. Hernández, Henríquez, H. R.: Existence results for second order partial neutral functional differential equations.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 15 (2008), 645-670. Zbl 1180.34089, MR 2446031
Reference: [20] Morales, M. E. Hernández, Henríquez, H. R., McKibben, M. A.: Existence of solutions for second order partial neutral functional differential equations.Integral Equations Oper. Theory 62 (2008), 191-217. Zbl 1187.35268, MR 2447914, 10.1007/s00020-008-1618-1
Reference: [21] Khochemane, H. E., Bouzettouta, L., Guerouah, A.: Exponential decay and well-posedness for a one-dimensional porous-elastic system with distributed delay.Appl. Anal. 100 (2021), 2950-2964. Zbl 1476.35047, MR 4309873, 10.1080/00036811.2019.1703958
Reference: [22] Khochemane, H. E., Zitouni, S., Bouzettouta, L.: Stability result for a nonlinear damping porous-elastic system with delay term.Nonlinear Stud. 27 (2020), 487-503. Zbl 1450.35252, MR 4103707
Reference: [23] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Études mathématiques. Dunod, Paris (1969), French. Zbl 0189.40603, MR 0259693
Reference: [24] Liu, G., Yan, J.: Global asymptotic stability of nonlinear neutral differential equation.Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 1035-1041. Zbl 1457.34110, MR 3119279, 10.1016/j.cnsns.2013.08.035
Reference: [25] Loucif, S., Guefaifia, R., Zitouni, S., Khochemane, H. E.: Global well-posedness and exponential decay of fully dynamic and electrostatic or quasi-static piezoelectric beams subject to a neutral delay.Z. Angew. Math. Phys. 74 (2023), Article ID 83, 22 pages. Zbl 1524.74134, MR 4572110, 10.1007/s00033-023-01972-4
Reference: [26] Magaña, A., Quintanilla, R.: On the time decay of solutions in one-dimensional theories of porous materials.Int. J. Solids Struct. 43 (2006), 3414-3427. Zbl 1121.74361, MR 2221521, 10.1016/j.ijsolstr.2005.06.077
Reference: [27] Rivera, J. E. Muñoz, Lapa, E. C., Barreto, R.: Decay rates for viscoelastic plates with memory.J. Elasticity 44 (1996), 61-87. Zbl 0876.73037, MR 1417809, 10.1007/BF00042192
Reference: [28] Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks.SIAM J. Control Optim. 45 (2006), 1561-1585. Zbl 1180.35095, MR 2272156, 10.1137/060648891
Reference: [29] Nicaise, S., Pignotti, C.: Stabilization of the wave equation with boundary or internal distributed delay.Differ. Integral Equ. 21 (2008), 935-958. Zbl 1224.35247, MR 2483342, 10.57262/die/1356038593
Reference: [30] Nunziato, J. W., Cowin, S. C.: A nonlinear theory of elastic materials with voids.Arch. Ration. Mech. Anal. 72 (1979), 175-201. Zbl 0444.73018, MR 0545517, 10.1007/BF00249363
Reference: [31] Quintanilla, R.: Slow decay for one-dimensional porous dissipation elasticity.Appl. Math. Lett. 16 (2003), 487-491. Zbl 1040.74023, MR 1983718, 10.1016/S0893-9659(03)00025-9
Reference: [32] Racke, R.: Instability of coupled systems with delay.Commun. Pure. Appl. Anal. 11 (2012), 1753-1773. Zbl 1267.35246, MR 2911109, 10.3934/cpaa.2012.11.1753
Reference: [33] Seghour, L., Tatar, N.-e., Berkani, A.: Stability of a thermoelastic laminated system subject to a neutral delay.Math. Methods Appl. Sci. 43 (2020), 281-304. Zbl 1445.35074, MR 4044239, 10.1002/mma.5878
Reference: [34] Wang, J.: Existence and stability of solutions for neutral differential equations with delay.International Conference on Multimedia Technology IEEE, Piscataway (2011), 2462-2465. 10.1109/ICMT.2011.6002527
Reference: [35] Xu, G. Q., Yung, S. P., Li, L. K.: Stabilization of wave systems with input delay in the boundary control.ESAIM, Control Optim. Calc. Var. 12 (2006), 770-785 \99999DOI99999 10.1051/cocv:2006021 \goodbreak. Zbl 1105.35016, MR 2266817, 10.1051/cocv:2006021
.

Files

Files Size Format View
MathBohem_150-2025-1_7.pdf 349.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo