[8] Choucha, A., Boulaaras, S. M., Ouchenane, D., Cherif, B. B., Abdalla, M.:
Exponential stability of swelling porous elastic with a viscoelastic damping and distributed delay term. J. Funct. Spaces 2021 (2021), Article ID 5581634, 8 pages.
DOI 10.1155/2021/5581634 |
MR 4225540 |
Zbl 1462.35073
[10] Datko, R.:
Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J. Control Optim. 26 (1988), 697-713.
DOI 10.1137/0326040 |
MR 0937679 |
Zbl 0643.93050
[11] Datko, R., Lagnese, J., Polis, M. P.:
An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim. 24 (1986), 152-156.
DOI 10.1137/032400 |
MR 0818942 |
Zbl 0592.93047
[13] Driver, R. D.:
A neutral system with state-dependent delays. Trends in Theory and Practice of Nonlinear Differential Equations Lecture Notes in Pure and Applied Mathematics 90. Marcel Dekker, Basel (1984), 157-161.
MR 0741499 |
Zbl 0543.34053
[14] Fareh, A., Messaoudi, S. A.:
Energy decay for a porous thermoelastic system with thermoelasticity of second sound and with a non-necessary positive definite energy. Appl. Math. Comput. 293 (2017), 493-507.
DOI 10.1016/j.amc.2016.08.040 |
MR 3549686 |
Zbl 1411.74023
[16] Foughali, F., Zitouni, S., Bouzettouta, L., Khochemane, H. E.:
Well-posedness and general decay for a porous-elastic system with microtemperatures effects and time-varying delay term. Z. Angew. Math. Phys. 73 (2022), Artile ID 183, 31 pages.
DOI 10.1007/s00033-022-01801-0 |
MR 4462689 |
Zbl 1495.35031
[19] Morales, M. E. Hernández, Henríquez, H. R.:
Existence results for second order partial neutral functional differential equations. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 15 (2008), 645-670.
MR 2446031 |
Zbl 1180.34089
[20] Morales, M. E. Hernández, Henríquez, H. R., McKibben, M. A.:
Existence of solutions for second order partial neutral functional differential equations. Integral Equations Oper. Theory 62 (2008), 191-217.
DOI 10.1007/s00020-008-1618-1 |
MR 2447914 |
Zbl 1187.35268
[22] Khochemane, H. E., Zitouni, S., Bouzettouta, L.:
Stability result for a nonlinear damping porous-elastic system with delay term. Nonlinear Stud. 27 (2020), 487-503.
MR 4103707 |
Zbl 1450.35252
[23] Lions, J. L.:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Études mathématiques. Dunod, Paris (1969), French.
MR 0259693 |
Zbl 0189.40603
[25] Loucif, S., Guefaifia, R., Zitouni, S., Khochemane, H. E.:
Global well-posedness and exponential decay of fully dynamic and electrostatic or quasi-static piezoelectric beams subject to a neutral delay. Z. Angew. Math. Phys. 74 (2023), Article ID 83, 22 pages.
DOI 10.1007/s00033-023-01972-4 |
MR 4572110 |
Zbl 1524.74134
[28] Nicaise, S., Pignotti, C.:
Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45 (2006), 1561-1585.
DOI 10.1137/060648891 |
MR 2272156 |
Zbl 1180.35095
[34] Wang, J.:
Existence and stability of solutions for neutral differential equations with delay. International Conference on Multimedia Technology IEEE, Piscataway (2011), 2462-2465.
DOI 10.1109/ICMT.2011.6002527
[35] Xu, G. Q., Yung, S. P., Li, L. K.:
Stabilization of wave systems with input delay in the boundary control. ESAIM, Control Optim. Calc. Var. 12 (2006), 770-785 \99999DOI99999 10.1051/cocv:2006021 \goodbreak.
DOI 10.1051/cocv:2006021 |
MR 2266817 |
Zbl 1105.35016