Title: | Two-step Ulm-Chebyshev-like method for inverse singular value problems with multiple singular values (English) |
Author: | Ma, Wei |
Author: | Zhu, Yuqing |
Author: | Dang, Yawei |
Language: | English |
Journal: | Applications of Mathematics |
ISSN: | 0862-7940 (print) |
ISSN: | 1572-9109 (online) |
Volume: | 70 |
Issue: | 1 |
Year: | 2025 |
Pages: | 65-95 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We study the convergence of two-step Ulm-Chebyshev-like method for solving the inverse singular value problems. We focus on the case when the given singular values are positive and multiple. This work extends the result of W. Ma (2022). We show that the new method is cubically convergent. Moreover, numerical experiments are given in the last section, which show that the proposed method is practical and efficient. (English) |
Keyword: | inverse singular value problem |
Keyword: | two-step |
Keyword: | Ulm-Chebyshev-like method |
Keyword: | cubically convergent |
Keyword: | multiple singular values |
MSC: | 15A18 |
MSC: | 65F15 |
MSC: | 65F18 |
DOI: | 10.21136/AM.2025.0237-24 |
. | |
Date available: | 2025-03-07T09:25:51Z |
Last updated: | 2025-03-10 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152886 |
. | |
Reference: | [1] Alonso, P., Flores-Becerra, G., Vidal, A. M.: Sequential and parallel algorithms for the inverse Toeplitz singular value problem.Proceedings of the 2006 International Conference on Scientific Computing, CSC 2006 CSREA Press, Las Vegas (2006), 91-96. |
Reference: | [2] Bai, Z.-J., Chu, D., Sun, D.: A dual optimization approach to inverse quadratic eigenvalue problems with partial eigenstructure.SIAM J. Sci. Comput. 29 (2007), 2531-2561. Zbl 1154.65312, MR 2357626, 10.1137/060656346 |
Reference: | [3] Bai, Z.-J., Jin, X.-Q., Vong, S.-W.: On some inverse singular value problems with Toeplitz-related structure.Numer. Algebra Control Optim. 2 (2012), 187-192. Zbl 1246.65060, MR 2904125, 10.3934/naco.2012.2.187 |
Reference: | [4] Bai, Z.-J., Morini, B., Xu, S.-F.: On the local convergence of an iterative approach for inverse singular value problems.J. Comput. Appl. Math. 198 (2007), 344-360. Zbl 1110.65030, MR 2260673, 10.1016/j.cam.2005.06.050 |
Reference: | [5] Bai, Z.-J., Xu, S.: An inexact Newton-type method for inverse singular value problems.Linear Algebra Appl. 429 (2008), 527-547. Zbl 1154.65021, MR 2419944, 10.1016/j.laa.2008.03.008 |
Reference: | [6] Chen, X. S., Sun, H.-W.: On the unsolvability for inverse singular value problems almost everywhere.Linear Multilinear Algebra 67 (2019), 987-994. Zbl 1411.65062, MR 3923041, 10.1080/03081087.2018.1440521 |
Reference: | [7] Chu, M. T.: Numerical methods for inverse singular value problems.SIAM J. Numer. Anal. 29 (1992), 885-903. Zbl 0757.65041, MR 1163362, 10.1137/0729054 |
Reference: | [8] Chu, M. T., Golub, G. H.: Structured inverse eigenvalue problems.Acta Numerica 11 (2002), 1-71. Zbl 1105.65326, MR 2008966, 10.1017/S0962492902000016 |
Reference: | [9] Chu, M. T., Golub, G. H.: Inverse Eigenvalue Problems: Theory, Algorithms, and Applications.Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2005). Zbl 1075.65058, MR 2263317, 10.1093/acprof:oso/9780198566649.001.0001 |
Reference: | [10] Ezquerro, J. A., Hernández, M. A.: An Ulm-type method with $R$-order of convergence three.Nonlinear Anal., Real World Appl. 13 (2012), 14-26. Zbl 1238.65048, MR 2846814, 10.1016/j.nonrwa.2011.07.039 |
Reference: | [11] Flores-Becerra, G., Garcia, V. M., Vidal, A. M.: Parallelization and comparison of local convergent algorithms for solving the inverse additive singular value problem.WSEAS Trans. Math. 5 (2006), 81-88. MR 2194662 |
Reference: | [12] Freund, R. W., Nachtigal, N. M.: QMR: A quasi-minimal residual method for non-Hermitian linear systems.Numer. Math. 60 (1991), 315-339. Zbl 0754.65034, MR 1137197, 10.1007/BF01385726 |
Reference: | [13] Friedland, S., Nocedal, J., Overton, M. L.: The formulation and analysis of numerical methods for inverse eigenvalue problems.SIAM. J. Numer. Anal. 24 (1987), 634-667. Zbl 0622.65030, MR 0888754, 10.1137/0724043 |
Reference: | [14] Ma, W.: Two-step Ulm-Chebyshev-like method for inverse singular value problems.Numer. Linear Algebra Appl. 29 (2022), Article ID e2440, 20 pages. Zbl 07584148, MR 4541746, 10.1002/nla.2440 |
Reference: | [15] Ma, W., Bai, Z.-J.: A regularized directional derivative-based Newton method for inverse singular value problems.Inverse Prob. 28 (2012), Article ID 125001, 24 pages. Zbl 1268.65053, MR 2997010, 10.1088/0266-5611/28/12/125001 |
Reference: | [16] Ma, W., Chen, X.-S.: Two-step inexact Newton-type method for inverse singular value problems.Numer. Algorithms 84 (2020), 847-870. Zbl 1442.65097, MR 4110687, 10.1007/s11075-019-00783-x |
Reference: | [17] Montaño, E., Salas, M., Soto, R. L.: Nonnegative matrices with prescribed extremal singular values.Comput. Math. Appl. 56 (2008), 30-42. Zbl 1145.15304, MR 2427682, 10.1016/j.camwa.2007.11.030 |
Reference: | [18] Montaño, E., Salas, M., Soto, R. L.: Positive matrices with prescribed singular values.Proyecciones 27 (2008), 289-305. Zbl 1178.15006, MR 2470405, 10.4067/S0716-09172008000300005 |
Reference: | [19] Politi, T.: A discrete approach for the inverse singular value problem in some quadratic group.Computational science -- ICCS 2003 Lecture Notes in Computer Science 2658. Springer, Berlin (2003), 121-130. Zbl 1147.65306, MR 2088389, 10.1007/3-540-44862-4_14 |
Reference: | [20] Potra, F. A., Qi, L., Sun, D.: Secant methods for semismooth equations.Numer. Math. 80 (1998), 305-324. Zbl 0914.65051, MR 1645041, 10.1007/s002110050369 |
Reference: | [21] Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations.Math. Oper. Res. 18 (1993), 227-244. Zbl 0776.65037, MR 1250115, 10.1287/moor.18.1.227 |
Reference: | [22] Queiró, J. F.: An inverse problem for singular values and the Jacobian of the elementary symmetric functions.Linear Algebra Appl. 197-198 (1994), 277-282. Zbl 0793.15007, MR 1275618, 10.1016/0024-3795(94)90491-X |
Reference: | [23] Rockafellar, R. T.: Convex Analysis.Princeton Mathematical Series 28. Princeton University Press, Princeton (1970). Zbl 0193.18401, MR 0274683, 10.1515/9781400873173 |
Reference: | [24] Saunders, C. S., Hu, J., Christoffersen, C. E., Steer, M. B.: Inverse singular value method for enforcing passivity in reduced-order models of distributed structures for transient and steady-state simulation.IEEE Trans. Microwave Theory Tech. 59 (2011), 837-847. 10.1109/TMTT.2011.2108311 |
Reference: | [25] Shen, W.-P., Li, C., Jin, X.-Q., Yao, J.-C.: Newton-type methods for inverse singular value problems with multiple singular values.Appl. Numer. Math. 109 (2016), 138-156. Zbl 1348.65073, MR 3541948, 10.1016/j.apnum.2016.06.008 |
Reference: | [26] Sun, D., Sun, J.: Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems.SIAM J. Numer. Anal. 40 (2002), 2352-2367. Zbl 1041.65037, MR 1974190, 10.1137/s0036142901393814 |
Reference: | [27] J. A. Tropp, I. S. Dhillon, R. W. Heath, Jr.: Finite-step algorithms for constructing optimal CDMA signature sequences.IEEE Trans. Inf. Theory 50 (2004), 2916-2921. Zbl 1288.94006, MR 2097014, 10.1109/TIT.2004.836698 |
Reference: | [28] Vong, S.-W., Bai, Z.-J., Jin, X.-Q.: An Ulm-like method for inverse singular value problems.SIAM J. Matrix Anal. Appl. 32 (2011), 412-429. Zbl 1232.65063, MR 2817496, 10.1137/100815748 |
Reference: | [29] Xu, S.-F.: An Introduction to Inverse Algebraic Eigenvalue Problems.Peking University Press, Peking (1998). Zbl 0927.65057, MR 1682124 |
Reference: | [30] Yuan, S., Liao, A., Yao, G.: Parameterized inverse singular value problem for anti-bisymmetric matrices.Numer. Algorithms 60 (2012), 501-522. Zbl 1247.65053, MR 2927669, 10.1007/s11075-011-9526-x |
. |
Fulltext not available (moving wall 24 months)