Previous |  Up |  Next

Article

Title: Two-step Ulm-Chebyshev-like method for inverse singular value problems with multiple singular values (English)
Author: Ma, Wei
Author: Zhu, Yuqing
Author: Dang, Yawei
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 1
Year: 2025
Pages: 65-95
Summary lang: English
.
Category: math
.
Summary: We study the convergence of two-step Ulm-Chebyshev-like method for solving the inverse singular value problems. We focus on the case when the given singular values are positive and multiple. This work extends the result of W. Ma (2022). We show that the new method is cubically convergent. Moreover, numerical experiments are given in the last section, which show that the proposed method is practical and efficient. (English)
Keyword: inverse singular value problem
Keyword: two-step
Keyword: Ulm-Chebyshev-like method
Keyword: cubically convergent
Keyword: multiple singular values
MSC: 15A18
MSC: 65F15
MSC: 65F18
DOI: 10.21136/AM.2025.0237-24
.
Date available: 2025-03-07T09:25:51Z
Last updated: 2025-03-10
Stable URL: http://hdl.handle.net/10338.dmlcz/152886
.
Reference: [1] Alonso, P., Flores-Becerra, G., Vidal, A. M.: Sequential and parallel algorithms for the inverse Toeplitz singular value problem.Proceedings of the 2006 International Conference on Scientific Computing, CSC 2006 CSREA Press, Las Vegas (2006), 91-96.
Reference: [2] Bai, Z.-J., Chu, D., Sun, D.: A dual optimization approach to inverse quadratic eigenvalue problems with partial eigenstructure.SIAM J. Sci. Comput. 29 (2007), 2531-2561. Zbl 1154.65312, MR 2357626, 10.1137/060656346
Reference: [3] Bai, Z.-J., Jin, X.-Q., Vong, S.-W.: On some inverse singular value problems with Toeplitz-related structure.Numer. Algebra Control Optim. 2 (2012), 187-192. Zbl 1246.65060, MR 2904125, 10.3934/naco.2012.2.187
Reference: [4] Bai, Z.-J., Morini, B., Xu, S.-F.: On the local convergence of an iterative approach for inverse singular value problems.J. Comput. Appl. Math. 198 (2007), 344-360. Zbl 1110.65030, MR 2260673, 10.1016/j.cam.2005.06.050
Reference: [5] Bai, Z.-J., Xu, S.: An inexact Newton-type method for inverse singular value problems.Linear Algebra Appl. 429 (2008), 527-547. Zbl 1154.65021, MR 2419944, 10.1016/j.laa.2008.03.008
Reference: [6] Chen, X. S., Sun, H.-W.: On the unsolvability for inverse singular value problems almost everywhere.Linear Multilinear Algebra 67 (2019), 987-994. Zbl 1411.65062, MR 3923041, 10.1080/03081087.2018.1440521
Reference: [7] Chu, M. T.: Numerical methods for inverse singular value problems.SIAM J. Numer. Anal. 29 (1992), 885-903. Zbl 0757.65041, MR 1163362, 10.1137/0729054
Reference: [8] Chu, M. T., Golub, G. H.: Structured inverse eigenvalue problems.Acta Numerica 11 (2002), 1-71. Zbl 1105.65326, MR 2008966, 10.1017/S0962492902000016
Reference: [9] Chu, M. T., Golub, G. H.: Inverse Eigenvalue Problems: Theory, Algorithms, and Applications.Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2005). Zbl 1075.65058, MR 2263317, 10.1093/acprof:oso/9780198566649.001.0001
Reference: [10] Ezquerro, J. A., Hernández, M. A.: An Ulm-type method with $R$-order of convergence three.Nonlinear Anal., Real World Appl. 13 (2012), 14-26. Zbl 1238.65048, MR 2846814, 10.1016/j.nonrwa.2011.07.039
Reference: [11] Flores-Becerra, G., Garcia, V. M., Vidal, A. M.: Parallelization and comparison of local convergent algorithms for solving the inverse additive singular value problem.WSEAS Trans. Math. 5 (2006), 81-88. MR 2194662
Reference: [12] Freund, R. W., Nachtigal, N. M.: QMR: A quasi-minimal residual method for non-Hermitian linear systems.Numer. Math. 60 (1991), 315-339. Zbl 0754.65034, MR 1137197, 10.1007/BF01385726
Reference: [13] Friedland, S., Nocedal, J., Overton, M. L.: The formulation and analysis of numerical methods for inverse eigenvalue problems.SIAM. J. Numer. Anal. 24 (1987), 634-667. Zbl 0622.65030, MR 0888754, 10.1137/0724043
Reference: [14] Ma, W.: Two-step Ulm-Chebyshev-like method for inverse singular value problems.Numer. Linear Algebra Appl. 29 (2022), Article ID e2440, 20 pages. Zbl 07584148, MR 4541746, 10.1002/nla.2440
Reference: [15] Ma, W., Bai, Z.-J.: A regularized directional derivative-based Newton method for inverse singular value problems.Inverse Prob. 28 (2012), Article ID 125001, 24 pages. Zbl 1268.65053, MR 2997010, 10.1088/0266-5611/28/12/125001
Reference: [16] Ma, W., Chen, X.-S.: Two-step inexact Newton-type method for inverse singular value problems.Numer. Algorithms 84 (2020), 847-870. Zbl 1442.65097, MR 4110687, 10.1007/s11075-019-00783-x
Reference: [17] Montaño, E., Salas, M., Soto, R. L.: Nonnegative matrices with prescribed extremal singular values.Comput. Math. Appl. 56 (2008), 30-42. Zbl 1145.15304, MR 2427682, 10.1016/j.camwa.2007.11.030
Reference: [18] Montaño, E., Salas, M., Soto, R. L.: Positive matrices with prescribed singular values.Proyecciones 27 (2008), 289-305. Zbl 1178.15006, MR 2470405, 10.4067/S0716-09172008000300005
Reference: [19] Politi, T.: A discrete approach for the inverse singular value problem in some quadratic group.Computational science -- ICCS 2003 Lecture Notes in Computer Science 2658. Springer, Berlin (2003), 121-130. Zbl 1147.65306, MR 2088389, 10.1007/3-540-44862-4_14
Reference: [20] Potra, F. A., Qi, L., Sun, D.: Secant methods for semismooth equations.Numer. Math. 80 (1998), 305-324. Zbl 0914.65051, MR 1645041, 10.1007/s002110050369
Reference: [21] Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations.Math. Oper. Res. 18 (1993), 227-244. Zbl 0776.65037, MR 1250115, 10.1287/moor.18.1.227
Reference: [22] Queiró, J. F.: An inverse problem for singular values and the Jacobian of the elementary symmetric functions.Linear Algebra Appl. 197-198 (1994), 277-282. Zbl 0793.15007, MR 1275618, 10.1016/0024-3795(94)90491-X
Reference: [23] Rockafellar, R. T.: Convex Analysis.Princeton Mathematical Series 28. Princeton University Press, Princeton (1970). Zbl 0193.18401, MR 0274683, 10.1515/9781400873173
Reference: [24] Saunders, C. S., Hu, J., Christoffersen, C. E., Steer, M. B.: Inverse singular value method for enforcing passivity in reduced-order models of distributed structures for transient and steady-state simulation.IEEE Trans. Microwave Theory Tech. 59 (2011), 837-847. 10.1109/TMTT.2011.2108311
Reference: [25] Shen, W.-P., Li, C., Jin, X.-Q., Yao, J.-C.: Newton-type methods for inverse singular value problems with multiple singular values.Appl. Numer. Math. 109 (2016), 138-156. Zbl 1348.65073, MR 3541948, 10.1016/j.apnum.2016.06.008
Reference: [26] Sun, D., Sun, J.: Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems.SIAM J. Numer. Anal. 40 (2002), 2352-2367. Zbl 1041.65037, MR 1974190, 10.1137/s0036142901393814
Reference: [27] J. A. Tropp, I. S. Dhillon, R. W. Heath, Jr.: Finite-step algorithms for constructing optimal CDMA signature sequences.IEEE Trans. Inf. Theory 50 (2004), 2916-2921. Zbl 1288.94006, MR 2097014, 10.1109/TIT.2004.836698
Reference: [28] Vong, S.-W., Bai, Z.-J., Jin, X.-Q.: An Ulm-like method for inverse singular value problems.SIAM J. Matrix Anal. Appl. 32 (2011), 412-429. Zbl 1232.65063, MR 2817496, 10.1137/100815748
Reference: [29] Xu, S.-F.: An Introduction to Inverse Algebraic Eigenvalue Problems.Peking University Press, Peking (1998). Zbl 0927.65057, MR 1682124
Reference: [30] Yuan, S., Liao, A., Yao, G.: Parameterized inverse singular value problem for anti-bisymmetric matrices.Numer. Algorithms 60 (2012), 501-522. Zbl 1247.65053, MR 2927669, 10.1007/s11075-011-9526-x
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo