Previous |  Up |  Next

Article

Title: Symmetric interior penalty discontinuous Galerkin method for nonlinear fully coupled quasi-static thermo-poroelasticity problems (English)
Author: Chen, Fan
Author: Cui, Ming
Author: Zhou, Chenguang
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 1
Year: 2025
Pages: 97-123
Summary lang: English
.
Category: math
.
Summary: We propose a symmetric interior penalty discontinuous Galerkin (DG) method for nonlinear fully coupled quasi-static thermo-poroelasticity problems. Firstly, a fully implicit nonlinear discrete scheme is constructed by adopting the DG method for the spatial approximation and the backward Euler method for the temporal discretization. Subsequently, the existence and uniqueness of the solution of the numerical scheme is proved, and then we derive the a priori error estimate for the three variables, i.e., the displacement, the pressure and the temperature. Lastly, we carry out numerical experiments to confirm the theoretical findings of our suggested approach. (English)
Keyword: thermo-poroelasticity
Keyword: fully implicit nonlinear discrete scheme
Keyword: symmetric interior penalty discontinuous Galerkin method
Keyword: a priori error estimate
MSC: 65M15
MSC: 65M55
MSC: 65M60
DOI: 10.21136/AM.2025.0197-24
.
Date available: 2025-03-07T09:26:30Z
Last updated: 2025-03-10
Stable URL: http://hdl.handle.net/10338.dmlcz/152887
.
Reference: [1] Adams, R. A.: Sobolev Spaces.Pure and Applied Mathematics 65. Academic Press, New York (1975). Zbl 0314.46030, MR 0450957
Reference: [2] Antonietti, P. F., Bonetti, S., Botti, M.: Discontinuous Galerkin approximation of the fully coupled thermo-poroelastic problem.SIAM J. Sci. Comput. 45 (2023), A621--A645. Zbl 1529.65052, MR 4579739, 10.1137/22M149874
Reference: [3] Arnold, D. N.: An interior penalty finite element method with discontinuous elements.SIAM J. Numer. Anal. 19 (1982), 742-760. Zbl 0482.65060, MR 664882, 10.1137/0719052
Reference: [4] Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D.: Unified analysis of discontinuous Galerkin methods for elliptic problems.SIAM J. Numer. Anal. 39 (2002), 1749-1779. Zbl 1008.65080, MR 1885715, 10.1137/S0036142901384162
Reference: [5] al., S. Balay et: PETSc Users Manual.Technical Report ANL-95/11-Revision 3.14. Argonne National Laboratory, Lemont (2020).
Reference: [6] Balay, S., Gropp, W. D., McInnes, L. C., Smith, B. F.: Efficient management of parallelism in object-oriented numerical software libraries.Modern Software Tools in Scientific Computing Birkhäuser, Boston (1997), 163-202. Zbl 0882.65154, MR 1452877, 10.1007/978-1-4612-1986-6_8
Reference: [7] Balay, S., Gropp, W. D., McInnes, L. C., Smith, B. F.: PETSc.Available at https://www.mcs.anl.gov/petsc (2019).
Reference: [8] Biot, M. A.: Theory of elasticity and consolidation for a porous anisotropic solid.J. Appl. Phys. 26 (1955), 182-185. Zbl 0067.23603, MR 0066874, 10.1063/1.1721956
Reference: [9] Bociu, L., Guidoboni, G., Sacco, R., Webster, J. T.: Analysis of nonlinear poro-elastic and poro-visco-elastic models.Arch. Ration. Mech. Anal. 222 (2016), 1445-1519. Zbl 1361.35139, MR 3544331, 10.1007/s00205-016-1024-9
Reference: [10] Brun, M. K., Ahmed, E., Berre, I., Nordbottem, J. M., Radu, F. A.: Monolithic and splitting solution schemes for fully coupled quasi-static thermo-poroelasticity with nonlinear convective transport.Comput. Math. Appl. 80 (2020), 1964-1984. Zbl 1451.74204, MR 4146798, 10.1016/j.camwa.2020.08.022
Reference: [11] Brun, M. K., Ahmed, E., Nordbottem, J. M., Radu, F. A.: Well-posedness of the fully coupled quasi-static thermo-poroelastic equations with nonlinear convective transport.J. Math. Anal. Appl. 471 (2019), 239-266. Zbl 1457.74055, MR 3906323, 10.1016/j.jmaa.2018.10.074
Reference: [12] Brun, M. K., Berre, I., Nordbottem, J. M., Radu, F. A.: Upscaling of the coupling of hydromechanical and thermal processes in a quasi-static poroelastic medium.Transp. Porous Media 124 (2018), 137-158. MR 3825656, 10.1007/s11242-018-1056-8
Reference: [13] J. Douglas, Jr., T. Dupont: Interior penalty procedures for elliptic and parabolic Galerkin methods.Computing Methods in Applied Sciences Lecture Notes in Physics 58. Springer, Berlin (1976), 207-216. MR 0440955, 10.1007/BFb0120591
Reference: [14] J. Douglas, Jr., J. E. Roberts: Numerical methods for a model for compressible miscible displacement in porous media.Math. Comput. 41 (1983), 441-459. Zbl 0537.76062, MR 717695, 10.1090/S0025-5718-1983-0717695-3
Reference: [15] Girault, V., Rivière, B.: DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition.SIAM J. Numer. Anal. 47 (2009), 2052-2089. Zbl 1406.76082, MR 2519594, 10.1137/070686081
Reference: [16] Girault, V., Rivière, B., Wheeler, M. F.: A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems.Math. Comput. 74 (2005), 53-84. Zbl 1057.35029, MR 2085402, 10.1090/S0025-5718-04-01652-7
Reference: [17] Hansbo, P., Larson, M. G.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method.Comput. Methods Appl. Mech. Eng. 191 (2002), 1895-1908. Zbl 1098.74693, MR 1886000, 10.1016/S0045-7825(01)00358-9
Reference: [18] Kaewjuea, W., Senjuntichai, T., Rajapakse, R. K. N. D.: Dynamic response of borehole in poroelastic medium with disturbed zone.CMES, Comput. Model. Eng. Sci. 101 (2014), 207-228. Zbl 1356.74135, MR 3309373, 10.3970/cmes.2014.101.207
Reference: [19] Masri, R., Shen, B., Rivière, B.: Discontinuous Galerkin approximations to elliptic and parabolic problems with a Dirac line source.ESAIM, Math. Model. Numer. Anal. 57 (2023), 585-620. Zbl 1514.65135, MR 4565982, 10.1051/m2an/2022095
Reference: [20] Oden, J. T., Baumann, I. Babuška C. E.: A discontinuous $hp$ finite element method for diffusion problems.J. Comput. Phys. 146 (1998), 491-519. Zbl 0926.65109, MR 1654911, 10.1006/jcph.1998.6032
Reference: [21] Ohm, M. R., Lee, H. Y., Shin, J. Y.: Error estimates for discontinuous Galerkin method for nonlinear parabolic equations.J. Math. Anal. Appl. 315 (2006), 132-143. Zbl 1094.65091, MR 2196535, 10.1016/j.jmaa.2005.07.027
Reference: [22] Phillips, P. J., Wheeler, M. F.: A coupling of mixed and discontinuous Galerkin finite element methods for poroelasticity.Comput. Geosci. 12 (2008), 417-435. Zbl 1155.74048, MR 2461315, 10.1007/s10596-008-9082-1
Reference: [23] Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation.Frontiers in Applied Mathematics 35. SIAM, Philadelphia (2008). Zbl 1153.65112, MR 2431403, 10.1137/1.9780898717440
Reference: [24] Smillie, A., Sobey, I., Molnar, Z.: A hydroelastic model of hydrocephalus.J. Fluid Mech. 539 (2005), 417-443. Zbl 1076.74040, MR 2262053, 10.1017/S0022112005005707
Reference: [25] Stewart, D. E.: Dynamics with Inequalities: Impacts and Hard Constraints.SIAM, Philadelphia (2011). Zbl 1241.37003, MR 2857428, 10.1137/1.9781611970715
Reference: [26] Sun, J., Shu, C.-W., Xing, Y.: Discontinuous Galerkin methods for stochastic Maxwell equations with multiplicative noise.ESAIM, Math. Model. Numer. Anal. 57 (2023), 841-864. Zbl 1529.65084, MR 4567994, 10.1051/m2an/2022084
Reference: [27] Suvorov, A. P., Selvadurai, A. P. S.: Macroscopic constitutive equations of thermo-poroviscoelasticity derived using eigenstrains.J. Mech. Phys. Solids 58 (2010), 1461-1473. Zbl 1200.74004, MR 2742019, 10.1016/j.jmps.2010.07.016
Reference: [28] Terzaghi, K.: Erdbaumechanik auf bodenphysikalischer Grundlage.Deuticke, Leipzig (1925), German \99999JFM99999 51.0655.07.
Reference: [29] Weinstein, T., Bennethum, L. S.: On the derivation of the transport equation for swelling porous materials with finite deformation.Int. J. Eng. Sci. 44 (2006), 1408-1422. Zbl 1213.74122, MR 2273503, 10.1016/j.ijengsci.2006.08.001
Reference: [30] Wheeler, M. F.: A priori $L_2$ error estimates for Galerkin approximations to parabolic partial differential equations.SIAM J. Numer. Anal. 10 (1973), 723-759. Zbl 0232.35060, MR 0351124, 10.1137/0710062
Reference: [31] Yang, J., Chen, Y.: A priori error analysis of a discontinuous Galerkin approximation for a kind of compressible miscible displacement problems.Sci. China, Math. 53 (2010), 2679-2696. Zbl 1273.76284, MR 2728271, 10.1007/s11425-010-3128-2
Reference: [32] Yang, X., Zhao, W., Zhao, W.: Strong optimal error estimates of discontinuous Galerkin method for multiplicative noise driving nonlinear SPDEs.Numer. Methods Partial Differ. Equations 39 (2023), 2073-2095. Zbl 07776998, MR 4570537, 10.1002/num.22958
Reference: [33] Zhang, J., Rui, H.: Galerkin method for the fully coupled quasi-static thermo-poroelastic problem.Comput. Math. Appl. 118 (2022), 95-109. Zbl 1524.76481, MR 4432106, 10.1016/j.camwa.2022.04.019
Reference: [34] Zhang, J., Rui, H.: A coupling of Galerkin and mixed finite element methods for the quasi-static thermo-poroelasticity with nonlinear convective transport.J. Comput. Appl. Math. 441 (2024), Article ID 115672, 17 pages. Zbl 1537.65143, MR 4668322, 10.1016/j.cam.2023.115672
Reference: [35] Zhang, J., Xia, Y., Xu, Y.: Moving water equilibria preserving discontinuous Galerkin method for the shallow water equations.J. Sci. Comput. 95 (2023), Article ID 48, 21 pages. Zbl 07698922, MR 4565862, 10.1007/s10915-023-02174-w
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo