Title: | Theoretical analysis for $\ell _{1}$-$\ell _{2}$ minimization with partial support information (English) |
Author: | Li, Haifeng |
Author: | Guo, Leiyan |
Language: | English |
Journal: | Applications of Mathematics |
ISSN: | 0862-7940 (print) |
ISSN: | 1572-9109 (online) |
Volume: | 70 |
Issue: | 1 |
Year: | 2025 |
Pages: | 125-148 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We investigate the recovery of $k$-sparse signals using the $\ell _{1}$-$\ell _{2}$ minimization model with prior support set information. The prior support set information, which is believed to contain the indices of nonzero signal elements, significantly enhances the performance of compressive recovery by improving accuracy, efficiency, reducing complexity, expanding applicability, and enhancing robustness. We assume $k$-sparse signals ${\bf x}$ with the prior support $T$ which is composed of $g$ true indices and $b$ wrong indices, i.e., $|T|=g+b\leq k$. First, we derive a new condition based on RIP of order $2\alpha $ $(\alpha =k-g)$ to guarantee signal recovery via $\ell _{1}$-$\ell _{2}$ minimization with partial support information. Second, we also derive the high order RIP with $t\alpha $ for some $t\geq 3$ to guarantee signal recovery via $\ell _{1}$-$\ell _{2}$ minimization with partial support information. (English) |
Keyword: | compressed sensing |
Keyword: | sparse optimization |
Keyword: | algorithm |
MSC: | 41A27 |
MSC: | 65D15 |
MSC: | 94A12 |
DOI: | 10.21136/AM.2024.0068-24 |
. | |
Date available: | 2025-03-07T09:27:28Z |
Last updated: | 2025-03-10 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152888 |
. | |
Reference: | [1] Bi, N., Tan, J., Tang, W.-S.: A new sufficient condition for sparse vector recovery via $\ell_{1}$-$\ell_{2}$ local minimization.Anal. Appl., Singap. 19 (2021), 1019-1031. Zbl 1492.94029, MR 4328764, 10.1142/S0219530521500068 |
Reference: | [2] Bi, N., Tang, W.-S.: A necessary and sufficient condition for sparse vector recovery via $\ell_{1}-\ell_{2}$ minimization.Appl. Comput. Harmon. Anal. 56 (2022), 337-350. Zbl 1485.90095, MR 4324183, 10.1016/j.acha.2021.09.003 |
Reference: | [3] Cai, T., Wang, L., Xu, G.: Shifting inequality and recovery of sparse signals.IEEE Trans. Signal Process. 58 (2010), 1300-1308. Zbl 1392.94117, MR 2730209, 10.1109/TSP.2009.2034936 |
Reference: | [4] Cai, T., Zhang, A.: Compressed sensing and affine rank minimization under restricted isometry.IEEE Trans. Signal Process. 61 (2013), 3279-3290. Zbl 1393.94185, MR 3070321, 10.1109/TSP.2013.2259164 |
Reference: | [5] Candès, E. J.: The restricted isometry property and its implications for compressed sensing.C. R., Math., Acad. Sci. Paris 346 (2008), 589-592. Zbl 1153.94002, MR 2412803, 10.1016/j.crma.2008.03.014 |
Reference: | [6] Candès, E. J., Plan, Y.: Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements.IEEE Trans. Inf. Theory 57 (2011), 2342-2359. Zbl 1366.90160, MR 2809094, 10.1109/TIT.2011.2111771 |
Reference: | [7] Candès, E. J., Tao, T.: Decoding by linear programming.IEEE Trans. Inf. Theory 51 (2005), 4203-4215. Zbl 1264.94121, MR 2243152, 10.1109/TIT.2005.858979 |
Reference: | [8] Donoho, D. L., Elad, M., Temlyakov, V. N.: Stable recovery of sparse overcomplete representations in the presence of noise.IEEE Trans. Inf. Theory 52 (2006), 6-18. Zbl 1288.94017, MR 2237332, 10.1109/TIT.2005.860430 |
Reference: | [9] Donoho, D. L., Huo, X.: Uncertainty principles and ideal atomic decomposition.IEEE Trans. Inf. Theory 47 (2001), 2845-2862. Zbl 1019.94503, MR 1872845, 10.1109/18.959265 |
Reference: | [10] Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing.Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2013). Zbl 1315.94002, MR 3100033, 10.1007/978-0-8176-4948-7 |
Reference: | [11] Ge, H., Chen, W.: An optimal recovery condition for sparse signals with partial support information via OMP.Circuits Syst. Signal Process. 38 (2019), 3295-3320. MR 3898369, 10.1007/s00034-018-01022-9 |
Reference: | [12] Ge, H., Chen, W., Ng, M. K.: New restricted isometry property analysis for $\ell_{1}-\ell_{2}$ minimization methods.SIAM J. Imaging Sci. 14 (2021), 530-557. Zbl 1474.94041, MR 4252074, 10.1137/20M136517X |
Reference: | [13] He, Z., He, H., Liu, X., Wen, J.: An improved sufficient condition for sparse signal recovery with minimization of $\ell_{1}-\ell_{2}$.IEEE Signal Process. Lett. 29 (2022), 907-911. 10.1109/LSP.2022.3158839 |
Reference: | [14] Herzet, C., Soussen, C., Idier, J., Gribonval, R.: Exact recovery conditions for sparse representations with partial support information.IEEE Trans. Inf. Theory 59 (2013), 7509-7524. Zbl 1364.94128, MR 3124657, 10.1109/TIT.2013.2278179 |
Reference: | [15] Jacques, L.: A short note on compressed sensing with partially known signal support.Signal Process. 90 (2010), 3308-3312. Zbl 1197.94063, 10.1016/j.sigpro.2010.05.025 |
Reference: | [16] Li, P., Chen, W.: Signal recovery under cumulative coherence.J. Comput. Appl. Math. 346 (2019), 399-417. Zbl 1405.94025, MR 3864169, 10.1016/j.cam.2018.07.019 |
Reference: | [17] Ma, T.-H., Lou, Y., Huang, T.-Z.: Truncated $\ell_{1-2}$ models for sparse recovery and rank minimization.SIAM J. Imaging Sci. 10 (2017), 1346-1380. Zbl 1397.94021, MR 3687849, 10.1137/16M1098929 |
Reference: | [18] Mo, Q., Li, S.: New bounds on the restricted isometry constant $\delta_{2k}$.Appl. Comput. Harmon. Anal. 31 (2011), 460-468. Zbl 1231.94027, MR 2836035, 10.1016/j.acha.2011.04.005 |
Reference: | [19] Scarlett, J., Evans, J. S., Dey, S.: Compressed sensing with prior information: Information-theoretic limits and practical decoders.IEEE Trans. Signal Process. 61 (2013), 427-439. Zbl 1393.94759, MR 3009136, 10.1109/TSP.2012.2225051 |
Reference: | [20] Borries, R. von, Miosso, C. J., Potes, C.: Compressed sensing using prior information.2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing IEEE, Philadelphia (2007), 121-124. 10.1109/CAMSAP.2007.4497980 |
Reference: | [21] Wang, W., Wang, J.: Improved sufficient condition of $\ell_{1-2}$-minimisation for robust signal recovery.Electron. Lett. 55 (2019), 1199-1201. 10.1049/el.2019.2205 |
Reference: | [22] Wen, J., Weng, J., Tong, C., Ren, C., Zhou, Z.: Sparse signal recovery with minimization of 1-norm minus 2-norm.IEEE Trans. Vehicular Technol. 68 (2019), 6847-6854. 10.1109/TVT.2019.2919612 |
Reference: | [23] Yin, P., Lou, Y., He, Q., Xin, J.: Minimization of $\ell_{1-2}$ for compressed sensing.SIAM J. Sci. Comput. 37 (2015), A536--A563. Zbl 1316.90037, MR 3315229, 10.1137/140952363 |
Reference: | [24] Zhang, J., Zhang, S., Meng, X.: $\ell_{1-2}$ minimisation for compressed sensing with partially known signal support.Electron. Lett. 56 (2020), 405-408. 10.1049/el.2019.3859 |
. |
Fulltext not available (moving wall 24 months)