Previous |  Up |  Next

Article

Title: In memory of Jaroslav Kurzweil (English)
Author: Tvrdý, Milan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 1
Year: 2025
Pages: 5-11
Summary lang: English
.
Category: math
.
DOI: 10.21136/CMJ.2024.0306-24
.
Date available: 2025-03-11T15:53:05Z
Last updated: 2025-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/152893
.
Reference: [1] Fonda, A.: The Kurzweil-Henstock Integral for Undergraduates. A Promenade Along the Marvelous Theory of Integration.Compact Textbooks in Mathematics. Birkhäuser, Cham (2018). Zbl 1410.26007, MR 3839629, 10.1007/978-3-319-95321-2
Reference: [2] Henstock, R.: The efficiency of convergence factors for functions of a continuous real variable.J. Lond. Math. Soc. 30 (1955), 273-286. Zbl 0066.09204, MR 0072968, 10.1112/jlms/s1-30.3.273
Reference: [3] Henstock, R.: A new descriptive definition of the Ward integral.J. Lond. Math. Soc. 35 (1960), 43-48. Zbl 0095.04504, MR 0110780, 10.1112/jlms/s1-35.1.43
Reference: [4] Henstock, R.: The equivalence of generalized forms of the Ward, variational, Denjoy-Stieltjes, and Perron-Stieltjes integrals.Proc. Lond. Math. Soc., III. Ser. 10 (1960), 281-303. Zbl 0131.29702, MR 0121460, 10.1112/plms/s3-10.1.281
Reference: [5] Henstock, R.: Definitions of Riemann type of the variational integrals.Proc. Lond. Math. Soc., III. Ser. 11 (1961), 402-418. Zbl 0099.27402, MR 0132147, 10.1112/plms/s3-11.1.402
Reference: [6] Henstock, R.: $N$-variation and $N$-variational integrals of set valued functions.Proc. Lond. Math. Soc., III. Ser. 11 (1961), 109-133. Zbl 0095.26601, MR 0123671, 10.1112/plms/s3-11.1.109
Reference: [7] Henstock, R.: Theory of Integration.Butterworth, London (1963). Zbl 0154.05001, MR 0158047
Reference: [8] Henstock, R.: Lectures on the Theory of Integration.Series in Real Analysis 1. World Scientific, Singapore (1988). Zbl 0668.28001, MR 0963249, 10.1142/0510
Reference: [9] Henstock, R.: The General Theory of Integration.Oxford University Press, Oxford (1991). Zbl 0745.26006, MR 1134656, 10.1093/oso/9780198535669.001.0001
Reference: [10] Jarník, J., Schwabik, Š.: Jaroslav Kurzweil septuagenarian.Czech. Math. J. 46 (1996), 375-382. Zbl 0870.01012, MR 1388626, 10.21136/CMJ.1996.127300
Reference: [11] Jarník, J., Schwabik, Š.: Jaroslav Kurzweil septuagenarian.Math. Bohem. 121 (1996), 215-222. Zbl 0863.01013, MR 1400614, 10.21136/MB.1996.126099
Reference: [12] Jarník, J., Schwabik, Š., Tvrdý, M., Vrkoč, I.: Sixty years of Jaroslav Kurzweil.Czech. Math. J. 36 (1986), 147-166. Zbl 0596.01029, MR 0822877, 10.21136/CMJ.1986.102076
Reference: [13] Jarník, J., Schwabik, Š., Tvrdý, M., Vrkoč, I.: Eighty years of Jaroslav Kurzweil.Math. Bohem. 131 (2006), 113-143. Zbl 1106.01319, MR 2242840, 10.21136/MB.2006.134088
Reference: [14] Knees, D., Zanini, C.: Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads.Discrete Contin. Dyn. Syst., Ser. S 14 (2021), 121-149. Zbl 1458.35439, MR 4186206, 10.3934/dcdss.2020332
Reference: [15] Krejčí, P., Liero, M.: Rate independent Kurzweil processes.Appl. Math., Praha 54 (2009), 117-145. Zbl 1212.49007, MR 2491851, 10.1007/s10492-009-0009-5
Reference: [16] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7 (1957), 418-449. Zbl 0090.30002, MR 0111875, 10.21136/CMJ.1957.100258
Reference: [17] Kurzweil, J.: Generalized ordinary differential equations.Czech. Math. J. 8 (1958), 360-388. Zbl 0094.05804, MR 0111878, 10.21136/CMJ.1958.100311
Reference: [18] Kurzweil, J.: On integration by parts.Czech. Math. J. 8 (1958), 356-359. Zbl 0094.03505, MR 0111877, 10.21136/CMJ.1958.100310
Reference: [19] Kurzweil, J.: Nichtabsolut konvergente Integrale.Teubner-Texte zur Mathematik 26. B. G. Teubner, Leipzig (1980), German. Zbl 0441.28001, MR 0597703
Reference: [20] Kurzweil, J.: Ordinary Differential Equations: Introduction to the Theory of Ordinary Differential Equations in the Real Domain.Studies in Applied Mechanics 13. Elsevier, Amsterdam (1986). Zbl 0667.34002, MR 0929466
Reference: [21] Kurzweil, J.: Henstock-Kurzweil Integration: Its Relation to Topological Vector Spaces.Series in Real Analysis 7. World Scientific, Singapore (2000). Zbl 0954.28001, MR 1763305, 10.1142/4333
Reference: [22] Kurzweil, J.: Integration Between the Lebesgue Integral and the Henstock-Kurzweil Integral: Its Relation to Local Convex Vector Spaces.Series in Real Analysis 8. World Scientific, Singapore (2002). Zbl 1018.26005, MR 1908744, 10.1142/5005
Reference: [23] Kurzweil, J.: Generalized Ordinary Differential Equations: Not Absolutely Continuous Solutions.Series in Real Analysis 11. World Scientific, Singapore (2012). Zbl 1248.34001, MR 2906899, 10.1142/7907
Reference: [24] Mawhin, J.: In memoriam Jaroslav Kurzweil (1926-2022).Real Anal. Exch. 47 (2022), 251-260. Zbl 1511.01045, MR 4551034, 10.14321/realanalexch.47.2.1654513566
Reference: [25] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications.Series in Real Analysis 15. World Scientific, Hackensack (2019). Zbl 1437.28001, MR 3839599, 10.1142/9432
Reference: [26] Pavlíček, T. W.: Ninety-five years of Jaroslav Kurzweil.Math. Bohem. 146 (2021), 115-129. Zbl 1499.01042, MR 4261362, 10.21136/MB.2021.0045-21
Reference: [27] Pavlíček, T. W., Kulawiaková, B.: The training of the Czech mathematician Jaroslav Kurzweil with Władysław Orlicz in Poland.Antiq. Math. 15 (2021), 181-206. Zbl 1518.01014, MR 4467508, 10.14708/am.v15i1.7078
Reference: [28] Schwabik, Š.: Generalized Ordinary Differential Equations.Series in Real Analysis 5. World Scientific, Singapore (1992). Zbl 0781.34003, MR 1200241, 10.1142/1875
Reference: [29] Schwabik, Š., Tvrdý, M., Vejvoda, O.: Differential and Integral Equations: Boundary Value Problems and Adjoints.D. Reidel, Dordrecht (1979). Zbl 0417.45001, MR 0542283
Reference: [30] Tvrdý, M.: Jaroslav Kurzweil (7. 5. 1926-17. 3. 2022).Equadiff 15: Conference on Differential Equations and Their Applications Masaryk University Press, Brno (2022), 25-28.
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo