Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Henstock-Kurzweil integral; divergence theorem; Denjoy-Perron integral; averaging method; Kurzweil generalized differential equation
Summary:
The paper describes to origin and motivation of Kurzweil in introducing a Riemann-type definition for generalized Perron integrals and his further contributions to the topics.
References:
[1] Bogolyubov, N. N., Mitropol'skij, Y. A.: Asymptotic Methods in the Theory of Nonlinear Oscillations. International Monographs on Advanced Mathematics and Physics. Gordon and Breach, New York (1961). MR 0141845 | Zbl 0151.12201
[2] Bongiorno, B.: A new integral for the problem of antiderivatives. Matematiche 51 (1996), 299-313 Italian. MR 1488074 | Zbl 0929.26007
[3] Bongiorno, B., Pfeffer, W. F.: A concept of absolute continuity and a Riemann type integral. Commentat. Math. Univ. Carol. 33 (1992), 189-196. MR 1189651 | Zbl 0776.26011
[4] Bonotto, E. M., Federson, M., (eds.), J. G. Mesquita: Generalized Ordinary Differential Equations in Abstract Spaces and Applications. John Wiley & Sons, Hoboken (2021). DOI 10.1002/9781119655022 | MR 4485103 | Zbl 1475.34001
[5] Carathéodory, C.: Vorlesungen über reelle Funktionen. B. G. Teubner, Leipzig (1918), German \99999JFM99999 46.0376.12. MR 0225940
[6] Cauchy, A.-L.: Résumé des leçons données a l'École Royale Polytechnique, sur le calcul infinitésimal. Tome premier. De l'Imprimerie Royale, Paris (1823), French. MR 1193026
[7] Cauchy, A.-L.: Équations différentielles ordinaires: Cours inédit, fragment. Études vivantes. Johnson Reprint, Paris (1981), French. MR 1013996 | Zbl 0558.01039
[8] Cousin, P.: Sur les fonctions de $n$ variables complexes. Acta Math. 19 (1895), 1-61 French \99999JFM99999 26.0456.02. DOI 10.1007/BF02402869 | MR 1554861
[9] Denjoy, A.: Une extension de l'intégrale de M. Lebesgue. C. R. Acad. Sci., Paris 154 (1912), 859-862 French \99999JFM99999 43.0360.01.
[10] Pauw, T. De: Autour du théorème de la divergence. Autour du centenaire Lebesgue Panoramas & Synthèses 18. Société Mathématique de France, Paris (2004), 85-121 French. MR 2143414 | Zbl 1105.26011
[11] Euler, L.: Institutiones calculi integralis. Volumen primum. Imperial Academy of Sciences, St. Petersburg (1768), Latin \99999JFM99999 44.0011.01.
[12] Fatou, P.: Sur le mouvement d'un système soumis à des forces à courte période. Bull. Soc. Math. Fr. 56 (1928), 98-139 French \99999JFM99999 54.0834.01. DOI 10.24033/bsmf.1131 | MR 1504928
[13] Fonda, A.: The Kurzweil-Henstock Integral for Undergraduates: A Promenade Along the Marvelous Theory of Integration. Compact Textbooks in Mathematics. Birkhäuser, Cham (2018). DOI 10.1007/978-3-319-95321-2 | MR 3839629 | Zbl 1410.26007
[14] Gichman, I. I.: Concerning a theorem of N. N. Bogolyubov. Ukr. Mat. Zh. 4 (1952), 215-219 Russian. MR 0075386 | Zbl 0049.34503
[15] Henstock, R.: Definitions of Riemann type of the variational integrals. Proc. Lond. Math. Soc., III. Ser. 11 (1961), 402-418. DOI 10.1112/plms/s3-11.1.402 | MR 0132147 | Zbl 0099.27402
[16] Jarník, J., Krejčí, P., Slavík, A., Tvrdý, M., Vrkoč, I.: Ninety years of Jaroslav Kurzweil. Math. Bohem. 141 (2016), 115-128. DOI 10.21136/MB.2016.10 | MR 3499779 | Zbl 1389.01013
[17] Jarník, J., Kurzweil, J.: A non absolutely convergent integral which admits transformation and can be used for integration on manifolds. Czech. Math. J. 35 (1985), 116-139. DOI 10.21136/CMJ.1985.102001 | MR 0779340 | Zbl 0614.26007
[18] Jarník, J., Kurzweil, J.: A new and more powerful concept of the PU-integral. Czech. Math. J. 38 (1988), 8-48. DOI 10.21136/CMJ.1988.102199 | MR 0925939 | Zbl 0669.26006
[19] Jarník, J., Kurzweil, J.: Pfeffer integrability does not imply $M_1$-integrability. Czech. Math. J. 44 (1994), 47-56. DOI 10.21136/CMJ.1994.128454 | MR 1257935 | Zbl 0810.26009
[20] Jarník, J., Kurzweil, J.: Perron-type integration on $n$-dimensional intervals and its properties. Czech. Math. J. 45 (1995), 79-106. DOI 10.21136/CMJ.1995.128500 | MR 1371683 | Zbl 0832.26009
[21] Jarník, J., Kurzweil, J.: Another Perron type integration in $n$ dimensions as an extension of integration of stepfunctions. Czech. Math. J. 47 (1997), 557-575. DOI 10.1023/A:1022423803986 | MR 1461432 | Zbl 0902.26006
[22] Jarník, J., Kurzweil, J., Schwabik, Š.: On Mawhin's approach to multiple nonabsolutely convergent integral. Čas. Pěst. Mat. 108 (1983), 356-380. DOI 10.21136/CPM.1983.118183 | MR 0727536 | Zbl 0555.26004
[23] Jarník, J., Schwabik, Š.: Jaroslav Kurzweil septuagenarian. Czech. Math. J. 46 (1996), 375-382. DOI 10.21136/CMJ.1996.127300 | MR 1388626 | Zbl 0870.01012
[24] Jarník, J., Schwabik, Š., Tvrdý, M., Vrkoč, I.: Sixty years of Jaroslav Kurzweil. Czech. Math. J. 36 (1986), 147-166. DOI 10.21136/CMJ.1986.102076 | MR 0822877 | Zbl 0596.01029
[25] Jarník, J., Schwabik, Š., Tvrdý, M., Vrkoč, I.: Eighty years of Jaroslav Kurzweil. Math. Bohem. 131 (2006), 113-143. DOI 10.21136/MB.2006.134088 | MR 2242840 | Zbl 1106.01319
[26] Krasnosel'skii, M. A., Krejn, S. G.: On the principle of averaging in nonlinear mechanics. Usp. Mat. Nauk 10 (1955), 147-152 Russian. MR 0071596 | Zbl 0064.33901
[27] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (1957), 418-449. DOI 10.21136/CMJ.1957.100258 | MR 0111875 | Zbl 0090.30002
[28] Kurzweil, J.: On integration by parts. Czech. Math. J. 8 (1958), 356-359. DOI 10.21136/CMJ.1958.100310 | MR 0111877 | Zbl 0094.03505
[29] Kurzweil, J.: On Fubini theorem for general Perron integral. Czech. Math. J. 23 (1973), 286-297. DOI 10.21136/CMJ.1973.101167 | MR 0333086 | Zbl 0267.26006
[30] Kurzweil, J.: On multiplication of Perron-integrable functions. Czech. Math. J. 23 (1973), 542-566. DOI 10.21136/CMJ.1973.101199 | MR 0335705 | Zbl 0269.26007
[31] Kurzweil, J.: The Perron-Ward integral and related concepts: Appendix A. Measure and Integral: Probability and Mathematical Statistics Academic Press, New York (1978), 515-533. MR 0514702 | Zbl 0446.28001
[32] Kurzweil, J.: Nichtabsolut konvergente Integrale. Teubner-Texte zur Mathematik 26. B. G. Teubner, Leipzig (1980), German. MR 0597703 | Zbl 0441.28001
[33] Kurzweil, J.: The integral as a limit of integral sums. Jahrb. Überblicke Math. 1984, Math. Surv. 17 (1984), 105-136. Zbl 0554.26007
[34] Kurzweil, J.: Henstock-Kurzweil Integration: Its Relation to Topological Vector Spaces. Series in Real Analysis 7. World Scientific, Singapore (2000). DOI 10.1142/4333 | MR 1763305 | Zbl 0954.28001
[35] Kurzweil, J.: Integration Between the Lebesgue Integral and the Henstock-Kurzweil Integral: Its Relation to Local Convex Vector Spaces. Series in Real Analysis 8. World Scientific, Singapore (2002). DOI 10.1142/5005 | MR 1908744 | Zbl 1018.26005
[36] Kurzweil, J.: Generalized Ordinary Differential Equations: Not Absolutely Continuous Solutions. Series in Real Analysis 11. World Scientific, Hackensack (2012). DOI 10.1142/7907 | MR 2906899 | Zbl 1248.34001
[37] Kurzweil, J., Jarník, J.: Equiintegrability and controlled convergence of Perron-type integrable functions. Real Anal. Exch. 17 (1991/92), 110-139. DOI 10.2307/44152200 | MR 1147361 | Zbl 0754.26003
[38] Kurzweil, J., Jarník, J.: Differentiability and integrability in $n$ dimensions with respect to $\alpha$-regular intervals. Result. Math. 21 (1992), 138-151. DOI 10.1007/BF03323075 | MR 1146639 | Zbl 0764.28005
[39] Kurzweil, J., Jarník, J.: Equivalent definitions of regular generalized Perron integral. Czech. Math. J. 42 (1992), 365-378. DOI 10.21136/CMJ.1992.128325 | MR 1179506 | Zbl 0782.26004
[40] Kurzweil, J., Jarník, J.: Generalized multidimensional Perron integral involving a new regularity condition. Result. Math. 23 (1993), 363-373. DOI 10.1007/BF03322308 | MR 1215221 | Zbl 0782.26003
[41] Kurzweil, J., Jarník, J.: Perron type integration on $n$-dimensional intervals as an extension of integration of stepfunctions by strong equiconvergence. Czech. Math. J. 46 (1996), 1-20. DOI 10.21136/CMJ.1996.127265 | MR 1371683 | Zbl 0902.26007
[42] Kurzweil, J., Jarník, J.: A convergence theorem for Henstock-Kurzweil integral and its relation to topology. Bull. Cl. Sci., VI. Sér., Acad. R. Belg. 8 (1997), 217-230. MR 1709540 | Zbl 1194.26013
[43] Kurzweil, J., Jarník, J.: Henstock-Kurzweil integration: Convergence cannot be replaced by a locally convex topology. Bull. Cl. Sci., VI. Sér., Acad. R. Belg. 9 (1998), 331-347. MR 1728847 | Zbl 1194.26012
[44] Kurzweil, J., Mawhin, J., Pfeffer, W. F.: An integral defined by approximating $BV$ partitions of unity. Czech. Math. J. 41 (1991), 695-712. DOI 10.21136/CMJ.1991.102500 | MR 1134958 | Zbl 0763.26007
[45] Lebesgue, H.: Intégrale, longueur, aire. Annali di Mat. (3) 7 (1902), 231-359 French \99999JFM99999 33.0307.02. DOI 10.1007/BF02420592 | MR 1398181
[46] Mawhin, J.: Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields. Czech. Math. J. 31 (1981), 614-632. DOI 10.21136/CMJ.1981.101777 | MR 0631606 | Zbl 0562.26004
[47] Mawhin, J.: Generalized Riemann integrals and the divergence theorem for differentiable vector fields. E. B. Christoffel: The Influence of His Work on Mathematics and the Physical Sciences Birkhäuser, Basel (1981), 704-714. DOI 10.1007/978-3-0348-5452-8_55 | MR 0661109 | Zbl 0562.26003
[48] Mawhin, J.: Integration and the fundamental theory of ordinary differential equations: A historical sketch. Constantin Carathéodory: An International Tribute. Volume II World Scientific, Singapore (1991), 828-849. DOI 10.1142/9789814350921_0043 | MR 1130868 | Zbl 0744.34003
[49] McShane, E. J.: A Riemann-type integral that includes Lebesgue-Stieltjes, Bochner and stochastic integrals. Memoirs of the American Mathematical Society 88. AMS, Providence (1969). DOI 10.1090/memo/0088 | MR 0265527 | Zbl 0188.35702
[50] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications. Series in Real Analysis 15. World Scientific, Hackensack (2019). DOI 10.1142/9432 | MR 3839599 | Zbl 1437.28001
[51] Moonens, L.: Intégration, de Riemann à Kurzweil et Henstock: La construction progressive des théories ``modernes" de l'intégrale. Références Sciences. Ellipses, Paris (2017), French. Zbl 1397.26002
[52] Nonnenmacher, D. J. F.: Every $ M_1$-integrable function is Pfeffer integrable. Czech. Math. J. 43 (1993), 327-330. DOI 10.21136/CMJ.1993.128400 | MR 1211754 | Zbl 0789.26006
[53] Perron, O.: Über den Integralbegriff. Heidelb. Ak. Sitzungsber. 14 (1914), 16 pages German \99999JFM99999 45.0445.01.
[54] Pfeffer, W. F.: The divergence theorem. Trans. Am. Math. Soc. 295 (1986), 665-685. DOI 10.1090/S0002-9947-1986-0833702-0 | MR 0833702 | Zbl 0596.26007
[55] Pfeffer, W. F.: The Riemann Approach to Integration: Local Geometric Theory. Cambridge Tracts in Mathematics 109. Cambridge University Press, Cambridge (1993). MR 1268404 | Zbl 0804.26005
[56] Riemann, B.: Ueber die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe. Abh. Kön. Ges. Wiss. Göttingen 14 (1868), 1-16 German \99999JFM99999 01.0131.03.
[57] Schwabik, Š.: Generalized Ordinary Differential Equations. Series in Real Analysis 5. World Scientific, Singapore (1992). DOI 10.1142/1875 | MR 1200241 | Zbl 0781.34003
[58] Volterra, V.: Sui principii del calcolo integrale. Battaglini G. 19 (1881), 333-372 Italian \99999JFM99999 13.0213.02.
[59] Ward, A. J.: The Perron-Stieltjes integral. Math. Z. 41 (1936), 578-604. DOI 10.1007/BF01180442 | MR 1545641 | Zbl 0014.39702
Partner of
EuDML logo