Title: | The origin and developments of Kurzweil's generalized Riemann integral (English) |
Author: | Mawhin, Jean |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 75 |
Issue: | 1 |
Year: | 2025 |
Pages: | 21-45 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | The paper describes to origin and motivation of Kurzweil in introducing a Riemann-type definition for generalized Perron integrals and his further contributions to the topics. (English) |
Keyword: | Henstock-Kurzweil integral |
Keyword: | divergence theorem |
Keyword: | Denjoy-Perron integral |
Keyword: | averaging method |
Keyword: | Kurzweil generalized differential equation |
MSC: | 01A70 |
MSC: | 26A39 |
MSC: | 26B20 |
MSC: | 28-02 |
DOI: | 10.21136/CMJ.2023.0196-23 |
. | |
Date available: | 2025-03-11T15:54:48Z |
Last updated: | 2025-03-19 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152895 |
. | |
Reference: | [1] Bogolyubov, N. N., Mitropol'skij, Y. A.: Asymptotic Methods in the Theory of Nonlinear Oscillations.International Monographs on Advanced Mathematics and Physics. Gordon and Breach, New York (1961). Zbl 0151.12201, MR 0141845 |
Reference: | [2] Bongiorno, B.: A new integral for the problem of antiderivatives.Matematiche 51 (1996), 299-313 Italian. Zbl 0929.26007, MR 1488074 |
Reference: | [3] Bongiorno, B., Pfeffer, W. F.: A concept of absolute continuity and a Riemann type integral.Commentat. Math. Univ. Carol. 33 (1992), 189-196. Zbl 0776.26011, MR 1189651 |
Reference: | [4] Bonotto, E. M., Federson, M., (eds.), J. G. Mesquita: Generalized Ordinary Differential Equations in Abstract Spaces and Applications.John Wiley & Sons, Hoboken (2021). Zbl 1475.34001, MR 4485103, 10.1002/9781119655022 |
Reference: | [5] Carathéodory, C.: Vorlesungen über reelle Funktionen.B. G. Teubner, Leipzig (1918), German \99999JFM99999 46.0376.12. MR 0225940 |
Reference: | [6] Cauchy, A.-L.: Résumé des leçons données a l'École Royale Polytechnique, sur le calcul infinitésimal. Tome premier.De l'Imprimerie Royale, Paris (1823), French. MR 1193026 |
Reference: | [7] Cauchy, A.-L.: Équations différentielles ordinaires: Cours inédit, fragment.Études vivantes. Johnson Reprint, Paris (1981), French. Zbl 0558.01039, MR 1013996 |
Reference: | [8] Cousin, P.: Sur les fonctions de $n$ variables complexes.Acta Math. 19 (1895), 1-61 French \99999JFM99999 26.0456.02. MR 1554861, 10.1007/BF02402869 |
Reference: | [9] Denjoy, A.: Une extension de l'intégrale de M. Lebesgue.C. R. Acad. Sci., Paris 154 (1912), 859-862 French \99999JFM99999 43.0360.01. |
Reference: | [10] Pauw, T. De: Autour du théorème de la divergence.Autour du centenaire Lebesgue Panoramas & Synthèses 18. Société Mathématique de France, Paris (2004), 85-121 French. Zbl 1105.26011, MR 2143414 |
Reference: | [11] Euler, L.: Institutiones calculi integralis. Volumen primum.Imperial Academy of Sciences, St. Petersburg (1768), Latin \99999JFM99999 44.0011.01. |
Reference: | [12] Fatou, P.: Sur le mouvement d'un système soumis à des forces à courte période.Bull. Soc. Math. Fr. 56 (1928), 98-139 French \99999JFM99999 54.0834.01. MR 1504928, 10.24033/bsmf.1131 |
Reference: | [13] Fonda, A.: The Kurzweil-Henstock Integral for Undergraduates: A Promenade Along the Marvelous Theory of Integration.Compact Textbooks in Mathematics. Birkhäuser, Cham (2018). Zbl 1410.26007, MR 3839629, 10.1007/978-3-319-95321-2 |
Reference: | [14] Gichman, I. I.: Concerning a theorem of N. N. Bogolyubov.Ukr. Mat. Zh. 4 (1952), 215-219 Russian. Zbl 0049.34503, MR 0075386 |
Reference: | [15] Henstock, R.: Definitions of Riemann type of the variational integrals.Proc. Lond. Math. Soc., III. Ser. 11 (1961), 402-418. Zbl 0099.27402, MR 0132147, 10.1112/plms/s3-11.1.402 |
Reference: | [16] Jarník, J., Krejčí, P., Slavík, A., Tvrdý, M., Vrkoč, I.: Ninety years of Jaroslav Kurzweil.Math. Bohem. 141 (2016), 115-128. Zbl 1389.01013, MR 3499779, 10.21136/MB.2016.10 |
Reference: | [17] Jarník, J., Kurzweil, J.: A non absolutely convergent integral which admits transformation and can be used for integration on manifolds.Czech. Math. J. 35 (1985), 116-139. Zbl 0614.26007, MR 0779340, 10.21136/CMJ.1985.102001 |
Reference: | [18] Jarník, J., Kurzweil, J.: A new and more powerful concept of the PU-integral.Czech. Math. J. 38 (1988), 8-48. Zbl 0669.26006, MR 0925939, 10.21136/CMJ.1988.102199 |
Reference: | [19] Jarník, J., Kurzweil, J.: Pfeffer integrability does not imply $M_1$-integrability.Czech. Math. J. 44 (1994), 47-56. Zbl 0810.26009, MR 1257935, 10.21136/CMJ.1994.128454 |
Reference: | [20] Jarník, J., Kurzweil, J.: Perron-type integration on $n$-dimensional intervals and its properties.Czech. Math. J. 45 (1995), 79-106. Zbl 0832.26009, MR 1371683, 10.21136/CMJ.1995.128500 |
Reference: | [21] Jarník, J., Kurzweil, J.: Another Perron type integration in $n$ dimensions as an extension of integration of stepfunctions.Czech. Math. J. 47 (1997), 557-575. Zbl 0902.26006, MR 1461432, 10.1023/A:1022423803986 |
Reference: | [22] Jarník, J., Kurzweil, J., Schwabik, Š.: On Mawhin's approach to multiple nonabsolutely convergent integral.Čas. Pěst. Mat. 108 (1983), 356-380. Zbl 0555.26004, MR 0727536, 10.21136/CPM.1983.118183 |
Reference: | [23] Jarník, J., Schwabik, Š.: Jaroslav Kurzweil septuagenarian.Czech. Math. J. 46 (1996), 375-382. Zbl 0870.01012, MR 1388626, 10.21136/CMJ.1996.127300 |
Reference: | [24] Jarník, J., Schwabik, Š., Tvrdý, M., Vrkoč, I.: Sixty years of Jaroslav Kurzweil.Czech. Math. J. 36 (1986), 147-166. Zbl 0596.01029, MR 0822877, 10.21136/CMJ.1986.102076 |
Reference: | [25] Jarník, J., Schwabik, Š., Tvrdý, M., Vrkoč, I.: Eighty years of Jaroslav Kurzweil.Math. Bohem. 131 (2006), 113-143. Zbl 1106.01319, MR 2242840, 10.21136/MB.2006.134088 |
Reference: | [26] Krasnosel'skii, M. A., Krejn, S. G.: On the principle of averaging in nonlinear mechanics.Usp. Mat. Nauk 10 (1955), 147-152 Russian. Zbl 0064.33901, MR 0071596 |
Reference: | [27] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7 (1957), 418-449. Zbl 0090.30002, MR 0111875, 10.21136/CMJ.1957.100258 |
Reference: | [28] Kurzweil, J.: On integration by parts.Czech. Math. J. 8 (1958), 356-359. Zbl 0094.03505, MR 0111877, 10.21136/CMJ.1958.100310 |
Reference: | [29] Kurzweil, J.: On Fubini theorem for general Perron integral.Czech. Math. J. 23 (1973), 286-297. Zbl 0267.26006, MR 0333086, 10.21136/CMJ.1973.101167 |
Reference: | [30] Kurzweil, J.: On multiplication of Perron-integrable functions.Czech. Math. J. 23 (1973), 542-566. Zbl 0269.26007, MR 0335705, 10.21136/CMJ.1973.101199 |
Reference: | [31] Kurzweil, J.: The Perron-Ward integral and related concepts: Appendix A.Measure and Integral: Probability and Mathematical Statistics Academic Press, New York (1978), 515-533. Zbl 0446.28001, MR 0514702 |
Reference: | [32] Kurzweil, J.: Nichtabsolut konvergente Integrale.Teubner-Texte zur Mathematik 26. B. G. Teubner, Leipzig (1980), German. Zbl 0441.28001, MR 0597703 |
Reference: | [33] Kurzweil, J.: The integral as a limit of integral sums.Jahrb. Überblicke Math. 1984, Math. Surv. 17 (1984), 105-136. Zbl 0554.26007 |
Reference: | [34] Kurzweil, J.: Henstock-Kurzweil Integration: Its Relation to Topological Vector Spaces.Series in Real Analysis 7. World Scientific, Singapore (2000). Zbl 0954.28001, MR 1763305, 10.1142/4333 |
Reference: | [35] Kurzweil, J.: Integration Between the Lebesgue Integral and the Henstock-Kurzweil Integral: Its Relation to Local Convex Vector Spaces.Series in Real Analysis 8. World Scientific, Singapore (2002). Zbl 1018.26005, MR 1908744, 10.1142/5005 |
Reference: | [36] Kurzweil, J.: Generalized Ordinary Differential Equations: Not Absolutely Continuous Solutions.Series in Real Analysis 11. World Scientific, Hackensack (2012). Zbl 1248.34001, MR 2906899, 10.1142/7907 |
Reference: | [37] Kurzweil, J., Jarník, J.: Equiintegrability and controlled convergence of Perron-type integrable functions.Real Anal. Exch. 17 (1991/92), 110-139. Zbl 0754.26003, MR 1147361, 10.2307/44152200 |
Reference: | [38] Kurzweil, J., Jarník, J.: Differentiability and integrability in $n$ dimensions with respect to $\alpha$-regular intervals.Result. Math. 21 (1992), 138-151. Zbl 0764.28005, MR 1146639, 10.1007/BF03323075 |
Reference: | [39] Kurzweil, J., Jarník, J.: Equivalent definitions of regular generalized Perron integral.Czech. Math. J. 42 (1992), 365-378. Zbl 0782.26004, MR 1179506, 10.21136/CMJ.1992.128325 |
Reference: | [40] Kurzweil, J., Jarník, J.: Generalized multidimensional Perron integral involving a new regularity condition.Result. Math. 23 (1993), 363-373. Zbl 0782.26003, MR 1215221, 10.1007/BF03322308 |
Reference: | [41] Kurzweil, J., Jarník, J.: Perron type integration on $n$-dimensional intervals as an extension of integration of stepfunctions by strong equiconvergence.Czech. Math. J. 46 (1996), 1-20. Zbl 0902.26007, MR 1371683, 10.21136/CMJ.1996.127265 |
Reference: | [42] Kurzweil, J., Jarník, J.: A convergence theorem for Henstock-Kurzweil integral and its relation to topology.Bull. Cl. Sci., VI. Sér., Acad. R. Belg. 8 (1997), 217-230. Zbl 1194.26013, MR 1709540 |
Reference: | [43] Kurzweil, J., Jarník, J.: Henstock-Kurzweil integration: Convergence cannot be replaced by a locally convex topology.Bull. Cl. Sci., VI. Sér., Acad. R. Belg. 9 (1998), 331-347. Zbl 1194.26012, MR 1728847 |
Reference: | [44] Kurzweil, J., Mawhin, J., Pfeffer, W. F.: An integral defined by approximating $BV$ partitions of unity.Czech. Math. J. 41 (1991), 695-712. Zbl 0763.26007, MR 1134958, 10.21136/CMJ.1991.102500 |
Reference: | [45] Lebesgue, H.: Intégrale, longueur, aire.Annali di Mat. (3) 7 (1902), 231-359 French \99999JFM99999 33.0307.02. MR 1398181, 10.1007/BF02420592 |
Reference: | [46] Mawhin, J.: Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields.Czech. Math. J. 31 (1981), 614-632. Zbl 0562.26004, MR 0631606, 10.21136/CMJ.1981.101777 |
Reference: | [47] Mawhin, J.: Generalized Riemann integrals and the divergence theorem for differentiable vector fields.E. B. Christoffel: The Influence of His Work on Mathematics and the Physical Sciences Birkhäuser, Basel (1981), 704-714. Zbl 0562.26003, MR 0661109, 10.1007/978-3-0348-5452-8_55 |
Reference: | [48] Mawhin, J.: Integration and the fundamental theory of ordinary differential equations: A historical sketch.Constantin Carathéodory: An International Tribute. Volume II World Scientific, Singapore (1991), 828-849. Zbl 0744.34003, MR 1130868, 10.1142/9789814350921_0043 |
Reference: | [49] McShane, E. J.: A Riemann-type integral that includes Lebesgue-Stieltjes, Bochner and stochastic integrals.Memoirs of the American Mathematical Society 88. AMS, Providence (1969). Zbl 0188.35702, MR 0265527, 10.1090/memo/0088 |
Reference: | [50] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications.Series in Real Analysis 15. World Scientific, Hackensack (2019). Zbl 1437.28001, MR 3839599, 10.1142/9432 |
Reference: | [51] Moonens, L.: Intégration, de Riemann à Kurzweil et Henstock: La construction progressive des théories ``modernes" de l'intégrale.Références Sciences. Ellipses, Paris (2017), French. Zbl 1397.26002 |
Reference: | [52] Nonnenmacher, D. J. F.: Every $ M_1$-integrable function is Pfeffer integrable.Czech. Math. J. 43 (1993), 327-330. Zbl 0789.26006, MR 1211754, 10.21136/CMJ.1993.128400 |
Reference: | [53] Perron, O.: Über den Integralbegriff.Heidelb. Ak. Sitzungsber. 14 (1914), 16 pages German \99999JFM99999 45.0445.01. |
Reference: | [54] Pfeffer, W. F.: The divergence theorem.Trans. Am. Math. Soc. 295 (1986), 665-685. Zbl 0596.26007, MR 0833702, 10.1090/S0002-9947-1986-0833702-0 |
Reference: | [55] Pfeffer, W. F.: The Riemann Approach to Integration: Local Geometric Theory.Cambridge Tracts in Mathematics 109. Cambridge University Press, Cambridge (1993). Zbl 0804.26005, MR 1268404 |
Reference: | [56] Riemann, B.: Ueber die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe.Abh. Kön. Ges. Wiss. Göttingen 14 (1868), 1-16 German \99999JFM99999 01.0131.03. |
Reference: | [57] Schwabik, Š.: Generalized Ordinary Differential Equations.Series in Real Analysis 5. World Scientific, Singapore (1992). Zbl 0781.34003, MR 1200241, 10.1142/1875 |
Reference: | [58] Volterra, V.: Sui principii del calcolo integrale.Battaglini G. 19 (1881), 333-372 Italian \99999JFM99999 13.0213.02. |
Reference: | [59] Ward, A. J.: The Perron-Stieltjes integral.Math. Z. 41 (1936), 578-604. Zbl 0014.39702, MR 1545641, 10.1007/BF01180442 |
. |
Fulltext not available (moving wall 24 months)