Article
Keywords:
Kurzweil-Stieltjes integral; Hölder function; counterexample
Summary:
For any $\alpha , \beta >0$ with $\alpha +\beta <1$ we provide a simple construction of an $\alpha $-Hölde function $f\colon [0,1]\to {\mathbb R}$ and a $\beta $-Hölder function $g\colon [0,1]\to {\mathbb R}$ such that the integral $\int _0^1 f {\rm d} g$ fails to exist even in the Kurzweil-Stieltjes sense.
References:
[6] Monteiro, G. A., Slavík, A., Tvrdý, M.:
Kurzweil-Stieltjes Integral: Theory and Applications. Series in Real Analysis 15. World Scientific, Hackensack (2019).
DOI 10.1142/9432 |
MR 3839599 |
Zbl 1437.28001