Previous |  Up |  Next

Article

Title: Elementary construction of Hölder functions such that the Kurzweil-Stieltjes integral does not exist (English)
Author: Rmoutil, Martin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 1
Year: 2025
Pages: 345-356
Summary lang: English
.
Category: math
.
Summary: For any $\alpha , \beta >0$ with $\alpha +\beta <1$ we provide a simple construction of an $\alpha $-Hölde function $f\colon [0,1]\to {\mathbb R}$ and a $\beta $-Hölder function $g\colon [0,1]\to {\mathbb R}$ such that the integral $\int _0^1 f {\rm d} g$ fails to exist even in the Kurzweil-Stieltjes sense. (English)
Keyword: Kurzweil-Stieltjes integral
Keyword: Hölder function
Keyword: counterexample
MSC: 26A16
MSC: 26A39
MSC: 26A42
DOI: 10.21136/CMJ.2024.0296-23
.
Date available: 2025-03-11T16:05:44Z
Last updated: 2025-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/152912
.
Reference: [1] Dudley, R. M., Norvaiša, R.: Differentiability of Six Operators on Nonsmooth Functions and $p$-Variation.Lecture Notes in Mathematics 1703. Springer, Berlin (1999). Zbl 0973.46033, MR 1705318, 10.1007/BFb0100744
Reference: [2] Dudley, R. M., Norvaiša, R.: Concrete Functional Calculus.Springer Monographs in Mathematics. Springer, New York (2011). Zbl 1218.46003, MR 2732563, 10.1007/978-1-4419-6950-7
Reference: [3] Hardy, G. H.: Weierstrass's non-differentiable function.Trans. Am. Math. Soc. 17 (1916), 301-325 \99999JFM99999 46.0401.03. MR 1501044, 10.1090/S0002-9947-1916-1501044-1
Reference: [4] Lacina, F.: Stochastic Integrals: Master's Thesis.Charles University, Prague (2016), Available at http://hdl.handle.net/20.500.11956/75283\kern0pt.
Reference: [5] Leśniewicz, R., Orlicz, W.: On generalized variations. II.Stud. Math. 45 (1973), 71-109. Zbl 0218.26007, MR 346509, 10.4064/sm-45-1-71-109
Reference: [6] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications.Series in Real Analysis 15. World Scientific, Hackensack (2019). Zbl 1437.28001, MR 3839599, 10.1142/9432
Reference: [7] Young, L. C.: An inequality of the Hölder type, connected with Stieltjes integration.Acta Math. 67 (1936), 251-282. Zbl 0016.10404, MR 1555421, 10.1007/BF02401743
Reference: [8] Zygmund, A.: Trigonometric Series. Volumes I and II Combined.Cambridge Mathematical Library. Cambridge University Press, Cambridge (2002). Zbl 1084.42003, MR 1963498, 10.1017/CBO9781316036587
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo