Article
Keywords:
toric varieties; orbit-cone correspondence; proalgebraic completion; algebraic solenoid
Summary:
We prove that there is an orbit-cone correspondence for the proalgebraic completion of normal toric varieties, which is analogous to the classical orbit-cone correspondence for toric varieties.
References:
[1] Burgos, J.M., Verjovsky, A.: Adelic Toric Varieties and Adelic Loop Groups. arXiv:2001.07997v2. Preprint 2021.
[2] Cox, D., Little, J., Schenck, H.:
Toric Varieties. Grad. Stud. Math., vol. 124, AMS, 2011.
MR 2810322
[3] Grothendieck, A., Raynaud, M.:
Revêtement Étales et Groupe Fondamental (SGA1). Lecture Notes in Math., Springer, Berlin Heidelberg New York, 1971.
MR 0354651
[4] Lyubich, M., Minsky, Y.:
Laminations in holomorphic dynamics. J. Differential Geom. 47 (1997), 17–94.
MR 1601430
[5] Oda, T.:
Convex bodies and algebraic geometry: An introduction to the theory of toric varieties. Springer, 1988.
MR 0922894
[6] Sullivan, D.:
Solenoidal manifolds. J. Singul. 9 (2014), 203–205.
MR 3249058