Previous |  Up |  Next

Article

Title: Orbit-cone correspondence for the proalgebraic completion of normal toric varieties (English)
Author: Hernandez-Mada, Genaro
Author: Martinez-Gil, Humberto Abraham
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 61
Issue: 1
Year: 2025
Pages: 1-8
Summary lang: English
.
Category: math
.
Summary: We prove that there is an orbit-cone correspondence for the proalgebraic completion of normal toric varieties, which is analogous to the classical orbit-cone correspondence for toric varieties. (English)
Keyword: toric varieties
Keyword: orbit-cone correspondence
Keyword: proalgebraic completion
Keyword: algebraic solenoid
MSC: 11R56
MSC: 13B35
MSC: 14M25
MSC: 57R30
DOI: 10.5817/AM2025-1-1
.
Date available: 2025-03-24T13:04:23Z
Last updated: 2025-03-24
Stable URL: http://hdl.handle.net/10338.dmlcz/152914
.
Reference: [1] Burgos, J.M., Verjovsky, A.: Adelic Toric Varieties and Adelic Loop Groups.arXiv:2001.07997v2. Preprint 2021.
Reference: [2] Cox, D., Little, J., Schenck, H.: Toric Varieties.Grad. Stud. Math., vol. 124, AMS, 2011. MR 2810322
Reference: [3] Grothendieck, A., Raynaud, M.: Revêtement Étales et Groupe Fondamental (SGA1).Lecture Notes in Math., Springer, Berlin Heidelberg New York, 1971. MR 0354651
Reference: [4] Lyubich, M., Minsky, Y.: Laminations in holomorphic dynamics.J. Differential Geom. 47 (1997), 17–94. MR 1601430
Reference: [5] Oda, T.: Convex bodies and algebraic geometry: An introduction to the theory of toric varieties.Springer, 1988. MR 0922894
Reference: [6] Sullivan, D.: Solenoidal manifolds.J. Singul. 9 (2014), 203–205. MR 3249058
.

Files

Files Size Format View
ArchMathRetro_061-2025-1_1.pdf 414.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo