Previous |  Up |  Next

Article

Keywords:
event-triggered control; command filter; unmodeled dynamics; function constraints; fixed-time stability
Summary:
In this paper, we investigate the problem of global output-feedback regulation for a class of switched nonlinear systems with unknown linear growth condition and uncertain output function. Based on the backstepping method, an adaptive output-feedback controller is designed to guarantee that the state of the switched nonlinear system can be globally regulated to the origin while maintaining global boundedness of the resulting closed-loop switched system under arbitrary switchings. A numerical example is given to demonstrate the effectiveness of the proposed control scheme.
References:
[1] Liberzon, D.: Switching in Systems and Control. Boston, Birkhauser, 2003. DOI  | MR 1987806 | Zbl 1036.93001
[2] Sun, Z., Ge, S.: Switched Linear Systems: Control and Design, London. Springer-Verlag, 2005. DOI 
[3] Zhao, X., Wang, X., Ma, L., Zong, G.: Fuzzy approximation based asymptotic tracking control for a class of uncertain switched nonlinear systems. IEEE T. Fuzzy Syst. 28 (2019), 632-644. DOI 
[4] Li, S., Ahn, C., Guo, J., Xiang, Z.: Neural-network approximation-based adaptive periodic event-triggered output-feedback control of switched nonlinear systems. IEEE T. Cybernetics. 51 (2020), 4011-4020. DOI  | MR 4092338
[5] Branicky, M.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE T. Automat. Contr. 43 (1998), 475-482. DOI  | MR 1617575 | Zbl 0904.93036
[6] Niu, B., Wang, D., Alotaibi, N., Alsaadi, F.: Adaptive neural state-feedback tracking control of stochastic nonlinear switched systems: An average dwell-time method. IEEE T. Neur. Net. Lear. 30 (2018), 1076-1087. DOI  | MR 3943038
[7] Fu, J., Ma, R., Chai, T.: Global finite-time stabilization of a class of switched nonlinear systems with the powers of positive odd rational numbers. Automatica 54 (2015), 360-373. DOI  | MR 3324542
[8] Long, L., Wang, Z., Zhao, J.: Switched adaptive control of switched nonlinearly parameterized systems with unstable subsystems. Automatica 54 (2015), 217-228. DOI  | MR 3324525
[9] Liu, L., Zhao, X., Sun, X., Zong, G.: Stability and $ l_2 $-gain analysis of discrete-time switched systems with mode-dependent average dwell time. IEEE T. Syst. Man Cy-S. 50 (2018), 2305-2314. DOI  | MR 3702882
[10] Sane, H., Bernstein, D.: Robust nonlinear control of the electromagnetically controlled oscillator. ACC (2002), 809-814. DOI 
[11] Tee, K., Ge, S., Tay, E.: Adaptive control of electrostatic microactuators with bidirectional drive. IEEE T. Contr. Syst. T. 17 (2009), 340-352. DOI 
[12] Ngo, K., Mahony, R., Jiang, Z.: Integrator backstepping using barrier functions for systems with multiple state constraints. CDC (2005), 8306-8312. DOI 
[13] Tee, K., Ge, S., Tay, E.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45 (2009), 918-927. DOI  | MR 2535351
[14] Tee, K., Ren, B., Ge, S.: Control of nonlinear systems with time-varying output constraints. Automatica 4 (2011), 2511-2516. DOI  | MR 2886884
[15] Meng, W., Yang, Q., Si, J., Sun, Y.: Adaptive neural control of a class of output-constrained nonaffine systems. IEEE T. Cybernetics. 46 (2016), 85-95. DOI  | MR 3554070
[16] Liu, Y., Tong, S.: Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica 64 (2016), 70-75. DOI  | MR 3433082
[17] Liu, Y., Tong, S.: Barrier Lyapunov functions for Nussbaum gain adaptive control of full state constrained nonlinear systems. Automatica 76 (2017), 143-152. DOI  | MR 3590564
[18] Liu, L., Liu, Y., Chen, A., Tong, S., Chen, C. Philip: Integral barrier Lyapunov function based adaptive control for switched nonlinear systems. Sci. China-Inf. Sci. 63 (2020), 1-14. DOI  | MR 4064432
[19] Sun, W., Su, S., Wu, Y., Xia, J.: Novel adaptive fuzzy control for output constrained stochastic nonstrict feedback nonlinear systems. IEEE T. Fuzzy Syst. 29 (2021), 1188-1197. DOI 
[20] Liu, L., Chen, A., Liu, Y.: Adaptive fuzzy output-feedback control for switched uncertain nonlinear systems with full-state constraints. IEEE T. Cybernetics. 52 (2021), 7340-7351. DOI 
[21] Zhang, J., Niu, B., Wang, D., Wang, H., Duan, P., Zong, G.: Adaptive neural control of nonlinear nonstrict feedback systems with full-state constraints: A novel nonlinear mapping method. IEEE T. Neur. Net. Lear. 34 (2023), 999-1007. DOI  | MR 4551126
[22] Farrell, J., Polycarpou, M., Sharma, M., Dong, W.: Command filtered backstepping. IEEE T. Automat. Contr. 54 (2009), 1391-1395. DOI  | MR 2532636
[23] Dong, W., Farrell, J., Polycarpou, M., Djapic, V., Sharma, M.: Command filtered adaptive backstepping. IEEE T. Contr. Syst. T. 20 (2012), 566-580. DOI  | MR 2532636
[24] Yu, J., Shi, P., Dong, W., Yu, H.: Observer and command-filter-based adaptive fuzzy output feedback control of uncertain nonlinear systems. IEEE Trans. Ind. Electron. 62 (2015), 5962-5970. DOI 
[25] Xia, J., Zhang, J., Feng, J., Wang, Z., Zhuang, G.: Command filter-based adaptive fuzzy control for nonlinear systems with unknown control directions. IEEE T. Syst. Man Cy-S. 31 (2021), 1945-1953. DOI 
[26] Bhat, S., Bernstein, D.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38 (2000), 751-766. DOI  | MR 1756893 | Zbl 0945.34039
[27] Li, M., Li, S., Ahn, C., Xiang, Z.: Adaptive fuzzy event-triggered command-filtered control for nonlinear time-delay systems. IEEE T. Fuzzy Syst. 30 (2022), 1025-1035. DOI 
[28] Song, Z., Li, P., Sun, Z., Wang, Z.: Finite-time adaptive fuzzy event-triggered control of constrained nonlinear systems via bounded command filter. IEEE T. Fuzzy Syst. 31 (2023), 117-128. DOI 
[29] Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE T. Automat. Contr. 57 (2012), 2016-2010. DOI  | MR 2957184
[30] Jin, X.: Adaptive fixed-time control for MIMO nonlinear systems with asymmetric output constraints using universal barrier functions. IEEE T. Automat. Contr. 64 (2019), 3046-3053. DOI  | MR 3978304
[31] Yao, H., Gao, F., Huang, J., Wu, Y.: Barrier Lyapunov functions-based fixed-time stabilization of nonholonomic systems with unmatched uncertainties and time-varying output constraints. Nonlinear Dyn. 99 (2020), 2835-2849. DOI 
[32] Song, Z., Li, P.: Fixed-time stabilisation for switched stochastic nonlinear systems with asymmetric output constraints. Int. J. Syst. Sci. 52 (2020), 990-1002. DOI  | MR 4236281
[33] Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76 (2003), 924-941. DOI  | MR 1999375 | Zbl 1049.93014
[34] Yu, J., Shi, P., Zhao, L.: Finite-time command filtered backstepping control for a class of nonlinear systems. Automatica 93 (2018), 173-180. DOI  | MR 3784289
[35] Ma, J., Park, J., Xu, S.: Command-filter-based finite-time adaptive control for nonlinear systems with quantized input. IEEE T. Automat. Contr. 66 (2020), 2339-2344. DOI  | MR 4250878
[36] Niu, B., Zhang, Y., Zhao, X., Wang, H., Sun, W.: Adaptive predefined-time bipartite consensus tracking control of constrained nonlinear MASs: An improved nonlinear mapping function method. IEEE T. Cybernetics. 53 (2023), 6017-6026. DOI 
[37] Xing, L., Wen, C., Liu, Z., Su, H., Cai, J.: Adaptive compensation for actuator failures with event-triggered input. Automatica 85 (2017), 129-136. DOI  | MR 3712853
[38] Liu, W., Ma, Q., Xu, S., Zhang, Z.: State quantized output feedback control for nonlinear systems via event-triggered sampling. IEEE T. Automat. Contr. 67 (2022), 6810-6817. DOI  | MR 4521562
[39] Tong, S., Zhou, H., Li, Y.: Neural network event-triggered formation fault-tolerant control for nonlinear multiagent systems with actuator faults. IEEE T. Syst. Man Cy-S. 53 (2023), 7571-7582. DOI 
[40] Shu, F., Zhai, J.: Dynamic event-triggered tracking control for a class of p-normal nonlinear systems. IEEE T. Circuits-I. 68 (2021), 808-817. DOI  | MR 4234567
[41] Shen, M., Wang, X., Zhu, S., Wu, Z., Huang, T.: Data-driven event-triggered adaptive dynamic programming control for nonlinear systems with input saturation. IEEE T. Cybernetics. 54 (2024), 1178-1188. DOI  | MR 4538369
[42] Wang, X., Shen, M., Zhu, S., Yan, H.: Data-driven finite-time control for nonlinear systems with event-triggered output. IEEE T. Circuits-II. 71 (2024), 4496-4500. DOI 
[43] Sun, Y., Wang, F., Liu, Z., Zhang, Y., Chen, C.: Fixed-time fuzzy control for a class of nonlinear systems. IEEE T. Cybernetics. 52 (2022), 3880-3887. DOI 
[44] Liu, Y., Zhao, W., Liu, L., Li, D., Tong, S., Chen, C.: Adaptive neural network control for a class of nonlinear systems with function constraints on states. IEEE T. Neur. Net. Lear. 34 (2023), 2732-2741. DOI  | MR 4600465
[45] Liu, L., Liu, Y., Tong, S.: Neural networks-based adaptive finite-time fault-tolerant control for a class of strict-feedback switched nonlinear systems. IEEE T. Cybernetics. 49 (2019), 2536-2545. DOI 
[46] Lin, W., Qian, C.: Adaptive control of nonlinearly parameterized systems: the smooth feedback case. IEEE T. Automat. Contr. 47 (2002), 1249-1266. DOI  | MR 1917435
[47] Ren, H., Lu, R., Xiong, J., Wu, Y., Shi, P.: Optimal filtered and smoothed estimators for discrete-time linear systems with multiple packet dropouts under Markovian communication constraints. IEEE T. Cybernetics. 50 (2020), 4169-4181. DOI 
[48] Ren, H., Ma, H., Li, H., Lu, R.: A disturbance observer based intelligent control for nonstrict-feedback nonlinear systems. Sci. China Technol. Sc. 66 (2023), 456-467. DOI 
Partner of
EuDML logo