Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Lipschitz-free space; nonseparable Banach space; sequentially compact; Radon--Nikodým property
Summary:
We prove that several classical Banach space properties are equivalent to separability for the class of Lipschitz-free spaces, including Corson's property ($\mathcal{C}$), Talponen's countable separation property, or being a Gâteaux differentiability space. On the other hand, we single out more general properties where this equivalence fails. In particular, the question whether the duals of nonseparable Lipschitz-free spaces have a weak$^*$ sequentially compact ball is undecidable in ZFC. Finally, we provide an example of a nonseparable dual Lipschitz-free space that fails the Radon--Nikodým property.
References:
[1] Albiac F., Kalton N. J.: Topics in Banach Space Theory. Graduate Texts in Mathematics, 233, Springer, Cham, 2016. MR 3526021 | Zbl 1094.46002
[2] Aliaga R. J., Gartland C., Petitjean C., Procházka A.: Purely $1$-unrectifiable metric spaces and locally flat Lipschitz functions. Trans. Amer. Math. Soc. 375 (2022), no. 5, 3529–3567. MR 4402669
[3] Aliaga R. J., Pernecká E.: Supports and extreme points in Lipschitz-free spaces. Rev. Mat. Iberoam. 36 (2020), no. 7, 2073–2089. DOI 10.4171/rmi/1191 | MR 4163992
[4] Aliaga R. J., Pernecká E., Petitjean C., Procházka A.: Supports in Lipschitz-free spaces and applications to extremal structure. J. Math. Anal. Appl. 489 (2020), no. 1, 124128, 14 pages. DOI 10.1016/j.jmaa.2020.124128 | MR 4083124
[5] Bogachev V. I.: Measure Theory. Springer, Berlin, 2007. MR 2267655
[6] Brezis H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York, 2011. MR 2759829
[7] Dancer E. N., Sims B.: Weak-star separability. Bull. Aust. Math. Soc. 20 (1979), no. 2, 253–257. DOI 10.1017/S0004972700010935 | MR 0557235
[8] Deville R., Godefroy G., Zizler V.: Smoothness and Renormings in Banach Spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics, 64, Longman Scientific and Technical, Harlow; John Wiley and Sons, New York, 1993. MR 1211634 | Zbl 0782.46019
[9] Dow A., Shelah S.: On the cofinality of the splitting number. Indag. Math. (N.S.) 29 (2018), no. 1, 382–395. DOI 10.1016/j.indag.2017.01.010 | MR 3739621
[10] van Douwen E. K.: The integers and topology. in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pages 111–167. MR 0776622 | Zbl 0561.54004
[11] Fabian M. J.: Gâteaux Differentiability of Convex Functions and Topology: Weak Asplund Spaces. Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley and Sons, New York, 1997. MR 1461271 | Zbl 0883.46011
[12] Fabian M., Habala P., Hájek P., Montesinos V., Zizler V.: Banach Space Theory. The Basis for Linear and Nonlinear Analysis. CMS Books in Mathematics, Springer, New York, 2011. MR 2766381
[13] García-Lirola L., Petitjean C., Procházka A.: Injectivity of Lipschitz operators. Bull. Malays. Math. Sci. Soc. 46 (2023), no. 2, Paper No. 68, 31 pages. DOI 10.1007/s40840-023-01467-5 | MR 4542688
[14] García-Lirola L., Petitjean C., Procházka A., Rueda Zoca A.: Extremal structure and duality of Lipschitz free spaces. Mediterr. J. Math. { \bf 15} (2018), no. 9, Paper No. 69, 23 pages. MR 3778926
[15] Hájek P., Novotný M.: Some remarks on the structure of Lipschitz-free spaces. Bull. Belg. Math. Soc. Simon Stevin 24 (2017), no. 2, 283–304. DOI 10.36045/bbms/1503453711 | MR 3694004
[16] Johnson W. B., Lindenstrauss J.: Some remarks on weakly compactly generated Banach spaces. Israel J. Math. 17 (1974), 219–230. DOI 10.1007/BF02882239 | MR 0417760
[17] Kalton N. J.: Spaces of Lipschitz and Hölder functions and their applications. Collect. Math. 55 (2004), no. 2, 171–217. MR 2068975
[18] Kalton N. J.: Lipschitz and uniform embeddings into $\ell_\infty$. Fund. Math. 212 (2011), no. 11, 53–69. DOI 10.4064/fm212-1-4 | MR 2771588
[19] Lacey H. E.: The Isometric Theory of Classical Banach Spaces. Die Grundlehren der mathematischen Wissenschaften, 208, Springer, New Yourk, 1974. MR 0493279 | Zbl 0285.46024
[20] Moors W. B., Somasundaram S.: A Gâteaux differentiability space that is not weak Asplund. Proc. Amer. Math. Soc. 134 (2006), no. 9, 2745–2754. DOI 10.1090/S0002-9939-06-08402-4 | MR 2213755
[21] Phelps R. R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics, 1364, Springer, Berlin, 1993. MR 1238715 | Zbl 0921.46039
[22] Raja M.: Super WCG Banach spaces. J. Math. Anal. Appl. 439 (2016), no. 1, 183–196. DOI 10.1016/j.jmaa.2016.02.057 | MR 3474357
[23] Rudin W.: Real and Complex Analysis. McGraw-Hill Bool Co., New York, 1987. MR 0924157 | Zbl 1038.00002
[24] Talponen J.: Lindelöf type of generalization of separability in Banach spaces. Topology Appl. 156 (2009), no. 5, 915–925. DOI 10.1016/j.topol.2008.11.009 | MR 2498924
[25] Weaver N.: Subalgebras of little Lipschitz algebras. Pacific J. Math. 173 (1996), no. 1, 283–293. DOI 10.2140/pjm.1996.173.283 | MR 1387803
[26] Weaver N.: Lipschitz Algebras. World Scientific Publishing Co., Hackensack, 2018. MR 3792558
[27] Zizler V.: Nonseparable Banach spaces. in Handbook of the Geometry of Banach Spaces, 2, North-Holland, Amsterdam, 2003, pages 1743–1816. MR 1999608 | Zbl 1041.46009
Partner of
EuDML logo