Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
bounded linear operator; numerical radius; operator norm; inequality
Summary:
This paper presents several numerical radii and norm inequalities for Hilbert space operators. These inequalities improve some earlier related inequalities. For an operator $A$, we prove that \begin{align*} \omega^{2}(A)\le & \Big\| \frac{A^{*}A+AA^{*}}{2} -\frac{1}{2R}\big(( 1-t){{A}^{*}}A+tA{{A}^{*}} &-((1-t)(A^{*}A)^{1/2}+( AA^{*})^{1/2} )^{2} \big) \Big\| \end{align*} where $R=\max\{t,1-t\}$ and $0\le t\le 1$.
References:
[1] Bhatia R.: Positive Definite Matrices. Princeton Series in Applied Mathematics, Princeton University Press, Princeton, 2007. MR 2284176
[2] Furuichi S., Moradi H. R., Sababheh M.: New inequalities for interpolational operator means. J. Math. Inequal. 15 (2021), no. 1, 107–116. DOI 10.7153/jmi-2021-15-10 | MR 4364630
[3] El-Haddad M., Kittaneh F.: Numerical radius inequalities for Hilbert space operators. II. Studia Math. 182 (2007), no. 2, 133–140. DOI 10.4064/sm182-2-3 | MR 2338481
[4] Hirzallah O., Kittaneh F., Shebrawi K.: Numerical radius inequalities for certain $ 2 \times 2 $ operator matrices. Integral Equations Operator Theory 71 (2011), no. 2, 129–147. MR 2822431
[5] Kittaneh F.: Notes on some inequalities for Hilbert space operators. Publ. Res. Inst. Math. Sci. 24 (1988), no. 2, 283–293. DOI 10.2977/prims/1195175202 | MR 0944864
[6] Kittaneh F.: Numerical radius inequalities for Hilbert space operators. Studia Math. 168 (2005), no. 1, 73–80. DOI 10.4064/sm168-1-5 | MR 2133388
[7] Kittaneh F., Moradi H. R.: Cauchy–Schwarz type inequalities and applications to numerical radius inequalities. Math. Inequal. Appl. 23 (2020), no. 3, 1117–1125. MR 4128973
[8] Moradi H. R., Sababheh M.: More accurate numerical radius inequalities (II). Linear Multilinear Algebra 69 (2021), no. 5, 921–933. DOI 10.1080/03081087.2019.1703886 | MR 4230456
[9] Omidvar M. E., Moradi H. R.: Better bounds on the numerical radii of Hilbert space operators. Linear Algebra Appl. 604 (2020), 265–277. MR 4121102
[10] Omidvar M. E., Moradi H. R.: New estimates for the numerical radius of Hilbert space operators. Linear Multilinear Algebra 69 (2021), no. 5, 946–956. DOI 10.1080/03081087.2020.1810200 | MR 4230458
[11] Sababheh M.: Convexity and matrix means. Linear Algebra Appl. 506 (2016), 588–602. MR 3530695
[12] Sababheh M., Conde C., Moradi H. R.: A convex-block approach for numerical radius inequalities. arXiv:2302.06777v1 [math.FA] (2023), 17 pages. MR 4754480
[13] Sababheh M., Moradi H. R.: More accurate numerical radius inequalities (I). Linear Multilinear Algebra. 69 (2021), no. 10, 1964–1973. MR 4279169
[14] Sababheh M., Moradi H. R., Heydarbeygi Z.: Buzano, Kreĭn and Cauchy–Schwarz inequalities. Oper. Matrices. 16 (2022), no. 1, 239–250. DOI 10.7153/oam-2022-16-19 | MR 4428609
[15] Sheybani S., Sababheh M., Moradi H. R.: Weighted inequalities for the numerical radius. Vietnam J. Math. 51 (2023), no. 2, 363–377. DOI 10.1007/s10013-021-00533-4 | MR 4545272
Partner of
EuDML logo