[1] Bhatia R.:
Positive Definite Matrices. Princeton Series in Applied Mathematics, Princeton University Press, Princeton, 2007.
MR 2284176
[2] Furuichi S., Moradi H. R., Sababheh M.:
New inequalities for interpolational operator means. J. Math. Inequal. 15 (2021), no. 1, 107–116.
DOI 10.7153/jmi-2021-15-10 |
MR 4364630
[3] El-Haddad M., Kittaneh F.:
Numerical radius inequalities for Hilbert space operators. II. Studia Math. 182 (2007), no. 2, 133–140.
DOI 10.4064/sm182-2-3 |
MR 2338481
[4] Hirzallah O., Kittaneh F., Shebrawi K.:
Numerical radius inequalities for certain $ 2 \times 2 $ operator matrices. Integral Equations Operator Theory 71 (2011), no. 2, 129–147.
MR 2822431
[7] Kittaneh F., Moradi H. R.:
Cauchy–Schwarz type inequalities and applications to numerical radius inequalities. Math. Inequal. Appl. 23 (2020), no. 3, 1117–1125.
MR 4128973
[9] Omidvar M. E., Moradi H. R.:
Better bounds on the numerical radii of Hilbert space operators. Linear Algebra Appl. 604 (2020), 265–277.
MR 4121102
[11] Sababheh M.:
Convexity and matrix means. Linear Algebra Appl. 506 (2016), 588–602.
MR 3530695
[12] Sababheh M., Conde C., Moradi H. R.:
A convex-block approach for numerical radius inequalities. arXiv:2302.06777v1 [math.FA] (2023), 17 pages.
MR 4754480
[13] Sababheh M., Moradi H. R.:
More accurate numerical radius inequalities (I). Linear Multilinear Algebra. 69 (2021), no. 10, 1964–1973.
MR 4279169