Previous |  Up |  Next

Article

Title: On the set function $\wp$ (English)
Author: Macías, Sergio
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 65
Issue: 1
Year: 2024
Pages: 99-129
Summary lang: English
.
Category: math
.
Summary: Inspired by the work that Professor Janusz R. Prajs did on homogeneous metric continua in his paper (2010) and the version of his work for Hausdorff continua with the uniform property of Effros done by this author, we introduce a new set function, $\wp$, and present properties of it. (English)
Keyword: additivity
Keyword: almost connected im kleinen
Keyword: analytic set
Keyword: aposyndetic continuum
Keyword: atomic map
Keyword: continuum
Keyword: decomposable continuum
Keyword: $G_\delta$ set
Keyword: hyperspace
Keyword: indecomposable continuum
Keyword: monotone map
Keyword: property of Kelley
Keyword: set function $\mathcal{K}$
Keyword: set function $\mathcal{T}$
Keyword: set function $\wp$
Keyword: set functions continuous on continua
Keyword: uniform property of Effros
Keyword: upper semicontinuous function
MSC: 54B20
MSC: 54C60
MSC: 54F16
DOI: 10.14712/1213-7243.2025.002
.
Date available: 2025-04-24T07:53:23Z
Last updated: 2025-04-25
Stable URL: http://hdl.handle.net/10338.dmlcz/152947
.
Reference: [1] Bellamy D. P., Porter K. F.: A homogeneous continuum that is non-Effros.Proc. Am. Math. Soc. 113 (1991), no. 2, 593–598. MR 1070510, 10.1090/S0002-9939-1991-1070510-X
Reference: [2] Camargo J., Macías S.: Dynamics with set-valued functions and coselections.Qual. Theory Dyn. Syst. 21 (2022), no. 2, Paper No. 25, 43 pages. MR 4372608, 10.1007/s12346-021-00556-9
Reference: [3] Charatonik W. J.: A homogeneous continuum without the property of Kelley.Topology Appl. 96 (1999), no. 3, 209–216. MR 1709689, 10.1016/S0166-8641(98)00055-8
Reference: [4] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [5] Goodykoontz J. T, Jr.: Some functions on hyperspaces of hereditarily unicoherent continua.Fund. Math. 95 (1977), no. 1, 1–10. MR 0436097, 10.4064/fm-95-1-1-10
Reference: [6] Gorka S.: Several Set Functions and Continuous Maps.Thesis Ph.D. Dissertation, University of Delaware, Delaware, 1997. MR 2696379
Reference: [7] Hagopian C. L.: Mutual aposyndesis.Proc. Amer. Math. Soc. 23 (1969), 615–622. MR 0247612, 10.1090/S0002-9939-1969-0247612-9
Reference: [8] Hagopian C. L.: Concerning arcwise connectedness and the existence of simple closed curves in plane continua.Trans. Amer. Math. Soc. 147 (1970), 389–402. MR 0254823, 10.1090/S0002-9947-1970-0254823-8
Reference: [9] Ingram W. T., Mahavier W. S.: Inverse limits of upper semi-continuous set valued functions.Houston J. Math. 32 (2006), no. 1, 119–130. MR 2202356
Reference: [10] Jones F. B.: Concerning non-aposyndetic continua.Amer. J. Math. 70 (1948), 403–413. MR 0025161, 10.2307/2372339
Reference: [11] Kechris A. S.: Classical Descriptive Set Theory.Graduate Texts in Mathematics, 156, Springer, New York, 1995. Zbl 0819.04002, MR 1321597
Reference: [12] Macías S.: Hausdorff continua and the uniform property of Effros.Topology Appl. 230 (2017), 338–352. MR 3702777, 10.1016/j.topol.2017.08.009
Reference: [13] Macías S.: On Jones’ set function $\mathcal{T}$ and the property of Kelley for Hausdorff continua.Topology Appl. 226 (2017), 51–65. MR 3660264
Reference: [14] Macías S.: Topics on Continua.Springer, Cham, 2018. MR 3823258
Reference: [15] Macías S.: Set Function $\mathcal{T}$ - an Account on F. B. Jones' Contributions to Topology.Developments in Mathematics, 67, Springer, Cham, 2021. MR 4238567
Reference: [16] Macías S.: The uniform Effros property and local homogeneity.Math. Slovaca 73 (2023), no. 4, 1013–1022. MR 4623271, 10.1515/ms-2023-0075
Reference: [17] Makuchowski W.: On local connectedness in hyperspaces.Bull. Polish Acad. Sci. Math. 47 (1999), no. 2, 119–126. MR 1686673
Reference: [18] Mrówka S.: On the convergence of nets of sets.Fund. Math. 45 (1958), 237–346. MR 0098359, 10.4064/fm-45-1-247-253
Reference: [19] Nadler S. B., Jr.: Hyperspaces of Sets: A Text with Research Questions.Aportaciones Matemáticas: Textos, 33, Sociedad Matemática Mexicana, México, 2006. MR 2293338
Reference: [20] Prajs J. R.: Mutually aposyndetic decomposition of homogeneous continua.Canad. J. Math. 62 (2010), no. 1, 182–201. MR 2597029, 10.4153/CJM-2010-010-4
Reference: [21] Rogers J. T., Jr.: Orbits of higher-dimensional hereditarily indecomposable continua.Proc. Amer. Math. Soc. 95 (1985), no. 3, 483–486. MR 0806092, 10.1090/S0002-9939-1985-0806092-1
Reference: [22] Rogers J. T., Jr.: Higher dimensional aposyndetic decompositions.Proc. Amer. Math. Soc. 131 (2003), no. 10, 3285–3288. MR 1992870, 10.1090/S0002-9939-03-06888-6
Reference: [23] Willard S.: General Topology.Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, 1970. Zbl 1052.54001, MR 0264581
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo