Previous |  Up |  Next

Article

Title: Induced mappings on hyperspaces $F_n^K(X)$ (English)
Author: Castañeda-Alvarado, Enrique
Author: Mondragón-Alvarez, Roberto C.
Author: Ordoñez, Norberto
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 65
Issue: 1
Year: 2024
Pages: 79-97
Summary lang: English
.
Category: math
.
Summary: Given a metric continuum $X$ and a positive integer $n$, $F_{n}(X)$ denotes the hyperspace of all nonempty subsets of $X$ with at most $n$ points endowed with the Hausdorff metric. For $K\in F_{n}(X)$, $F_{n}(K,X)$ denotes the set of elements of $F_{n}(X)$ containing $K$ and $F_{n}^K(X)$ denotes the quotient space obtained from $F_{n}(X)$ by shrinking $F_{n}(K,X)$ to one point set. Given a map $f\colon X\to Y$ between continua, $f_{n}\colon F_{n}(X)\to F_{n}(Y)$ denotes the induced map defined by $f_{n}(A)=\nobreak f(A)$. Let $K\in F_{n}(X)$, we shall consider the induced map in the natural way $f_{n,K}\colon F_{n}^K(X)\to F_{n}^{f(K)}(Y)$. In this paper we consider the maps $f$, $f_{n}$, $f_{n,K}$ for some $K\in F_n(X)$ and $f_{n,K}$ for each $K\in F_n(X)$; and we study relationship between them for the following classes of maps: homeomorphisms, monotone, confluent, light and open maps. (English)
Keyword: continuum
Keyword: symmetric product
Keyword: quotient space
Keyword: hyperspace
Keyword: induced mapping
MSC: 54B15
MSC: 54B20
MSC: 54C05
MSC: 54C10
DOI: 10.14712/1213-7243.2024.016
.
Date available: 2025-04-24T07:51:26Z
Last updated: 2025-04-25
Stable URL: http://hdl.handle.net/10338.dmlcz/152946
.
Reference: [1] Barragán F.: Induced maps on $n$-fold symmetric product suspensions.Topology Appl. 158 (2011), no. 10, 1192–1205. MR 2796121, 10.1016/j.topol.2011.04.006
Reference: [2] Castañeda-Alvarado E., Mondragón R. C., Ordoñez N., Orozco-Zitli F.: The hyperspace $F_n^K(X)$.Bull. Iranian Math. Soc. 47 (2021), no. 3, 659–678. MR 4249170
Reference: [3] Dugundji J.: Topology.Allyn and Bacon, Boston, 1966. Zbl 0397.54003, MR 0193606
Reference: [4] Higuera G., Illanes A.: Induced mappings on symmetric products.Topology Proc. 37 (2011), 367–401. MR 2740654
Reference: [5] Hosokawa H.: Induced mappings between hyperspaces II.Bull. Tokyo Gakugei Univ. (4) 44 (1992), 1–7. MR 1193338
Reference: [6] Kuratowski K.: Topology.Academic Press, New York, London, Państwowe Wydawnictwo Naukowe, Warsaw, 1968. Zbl 0849.01044
Reference: [7] Macías S.: Aposyndetic properties of symmetric products of continua.Topology Proc. 22 (1997), 281–296. MR 1657883
Reference: [8] Macías S.: Topics on Continua.Pure Appl. Math. Ser., 275, Chapman and Hall/CRC, Taylor and Francis Group, Boca Raton, 2005. MR 2147759
Reference: [9] Maćkowiak T.: Continuous Mappings on Continua.Dissertationes Math., Rozprawy Mat., 158, 1979. MR 0522934
Reference: [10] Nadler S. B., Jr.: Hyperspaces of Sets.A Text with Research Questions, Monographs and Texbooks in Pure and Applied Mathematics, 49, Marcel Dekker, New York-Basel, 1978. Zbl 1125.54001, MR 0500811
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo