Title: | Induced mappings on hyperspaces $F_n^K(X)$ (English) |
Author: | Castañeda-Alvarado, Enrique |
Author: | Mondragón-Alvarez, Roberto C. |
Author: | Ordoñez, Norberto |
Language: | English |
Journal: | Commentationes Mathematicae Universitatis Carolinae |
ISSN: | 0010-2628 (print) |
ISSN: | 1213-7243 (online) |
Volume: | 65 |
Issue: | 1 |
Year: | 2024 |
Pages: | 79-97 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Given a metric continuum $X$ and a positive integer $n$, $F_{n}(X)$ denotes the hyperspace of all nonempty subsets of $X$ with at most $n$ points endowed with the Hausdorff metric. For $K\in F_{n}(X)$, $F_{n}(K,X)$ denotes the set of elements of $F_{n}(X)$ containing $K$ and $F_{n}^K(X)$ denotes the quotient space obtained from $F_{n}(X)$ by shrinking $F_{n}(K,X)$ to one point set. Given a map $f\colon X\to Y$ between continua, $f_{n}\colon F_{n}(X)\to F_{n}(Y)$ denotes the induced map defined by $f_{n}(A)=\nobreak f(A)$. Let $K\in F_{n}(X)$, we shall consider the induced map in the natural way $f_{n,K}\colon F_{n}^K(X)\to F_{n}^{f(K)}(Y)$. In this paper we consider the maps $f$, $f_{n}$, $f_{n,K}$ for some $K\in F_n(X)$ and $f_{n,K}$ for each $K\in F_n(X)$; and we study relationship between them for the following classes of maps: homeomorphisms, monotone, confluent, light and open maps. (English) |
Keyword: | continuum |
Keyword: | symmetric product |
Keyword: | quotient space |
Keyword: | hyperspace |
Keyword: | induced mapping |
MSC: | 54B15 |
MSC: | 54B20 |
MSC: | 54C05 |
MSC: | 54C10 |
DOI: | 10.14712/1213-7243.2024.016 |
. | |
Date available: | 2025-04-24T07:51:26Z |
Last updated: | 2025-04-25 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152946 |
. | |
Reference: | [1] Barragán F.: Induced maps on $n$-fold symmetric product suspensions.Topology Appl. 158 (2011), no. 10, 1192–1205. MR 2796121, 10.1016/j.topol.2011.04.006 |
Reference: | [2] Castañeda-Alvarado E., Mondragón R. C., Ordoñez N., Orozco-Zitli F.: The hyperspace $F_n^K(X)$.Bull. Iranian Math. Soc. 47 (2021), no. 3, 659–678. MR 4249170 |
Reference: | [3] Dugundji J.: Topology.Allyn and Bacon, Boston, 1966. Zbl 0397.54003, MR 0193606 |
Reference: | [4] Higuera G., Illanes A.: Induced mappings on symmetric products.Topology Proc. 37 (2011), 367–401. MR 2740654 |
Reference: | [5] Hosokawa H.: Induced mappings between hyperspaces II.Bull. Tokyo Gakugei Univ. (4) 44 (1992), 1–7. MR 1193338 |
Reference: | [6] Kuratowski K.: Topology.Academic Press, New York, London, Państwowe Wydawnictwo Naukowe, Warsaw, 1968. Zbl 0849.01044 |
Reference: | [7] Macías S.: Aposyndetic properties of symmetric products of continua.Topology Proc. 22 (1997), 281–296. MR 1657883 |
Reference: | [8] Macías S.: Topics on Continua.Pure Appl. Math. Ser., 275, Chapman and Hall/CRC, Taylor and Francis Group, Boca Raton, 2005. MR 2147759 |
Reference: | [9] Maćkowiak T.: Continuous Mappings on Continua.Dissertationes Math., Rozprawy Mat., 158, 1979. MR 0522934 |
Reference: | [10] Nadler S. B., Jr.: Hyperspaces of Sets.A Text with Research Questions, Monographs and Texbooks in Pure and Applied Mathematics, 49, Marcel Dekker, New York-Basel, 1978. Zbl 1125.54001, MR 0500811 |
. |
Fulltext not available (moving wall 24 months)