Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
finite group; cyclic group; nilpotent group; element order
Summary:
Let $G$ be a finite group. The functions $\psi (G)$ and $\psi _{*}(G)$ denote the sum of the element orders and the sum of the prime element orders of $G$, respectively. Significant results related to the study of these functions have been published recently. Further, the function $R(G)$ was introduced to denote the product of the element orders of $G$. We introduce ${R_{*}}(G)$, which denotes the product of the prime element orders of a finite group $G$. We find a lower bound for ${R_{*}}$ on the set of groups of the same order and deduce a result on nilpotent groups using ${R_{*}}$.
References:
[1] Amiri, H., Amiri, S. M. Jafarian: Sum of element orders on finite groups of the same order. J. Algebra Appl. 10 (2011), 187-190. DOI 10.1142/S0219498811005385 | MR 2795731 | Zbl 1217.20015
[2] Amiri, H., Amiri, S. M. Jafarian, Isaacs, I. M.: Sums of element orders in finite groups. Commun. Algebra 37 (2009), 2978-2980. DOI 10.1080/00927870802502530 | MR 2554185 | Zbl 1183.20022
[3] Beddani, C., Messirdi, W.: Sums of prime element orders in finite groups. J. Taibah Univ. Sci. 12 (2018), 294-298. DOI 10.1080/16583655.2018.1468398
[4] Chew, C. Y., Chin, A. Y. M., Lim, C. S.: A recursive formula for the sum of element orders of finite abelian groups. Result. Math. 72 (2017), 1897-1905. DOI 10.1007/s00025-017-0710-8 | MR 3735531 | Zbl 1378.20035
[5] Harrington, J., Jones, L., Lamarche, A.: Characterizing finite groups using the sum of the orders of the elements. Int. J. Comb. 2014 (2014), Article ID 835125, 8 pages. DOI 10.1155/2014/835125 | MR 3280890 | Zbl 1309.20020
[6] Amiri, S. M. Jafarian, Amiri, M.: Sum of the products of the orders of two distinct elements in finite groups. Commun. Algebra 42 (2014), 5319-5328. DOI 10.1080/00927872.2013.839697 | MR 3223642 | Zbl 1321.20025
[7] Pakianathan, J., Shankar, K.: Nilpotent numbers. Am. Math. Mon. 107 (2000), 631-634. DOI 10.1080/00029890.2000.12005248 | MR 1786236 | Zbl 0986.20026
[8] Tărnăuceanu, M.: An arithmetic method of counting the subgroups of a finite abelian group. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 53 (2010), 373-386. MR 2777681 | Zbl 1231.20051
[9] Tărnăuceanu, M.: A note on the product of element orders of finite abelian groups. Bull. Malays. Math. Sci. Soc. (2) 36 (2013), 1123-1126. MR 3108800 | Zbl 1280.20058
[10] Tărnăuceanu, M.: Detecting structural properties of finite groups by the sum of element orders. Isr. J. Math. 238 (2020), 629-637. DOI 10.1007/s11856-020-2033-9 | MR 4145812 | Zbl 1483.20048
[11] Tărnăuceanu, M., Fodor, D. G.: On the sum of element orders of finite abelian groups. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 60 (2014), 1-7. DOI 10.2478/aicu-2013-0013 | MR 3252452 | Zbl 1299.20059
Partner of
EuDML logo