[3] Bass, H.: The Morita Theorems. University of Oregon, Eugene (1969).
[9] Enochs, E. E., Jenda, O. M. G., Torrecillas, B.:
Gorenstein flat modules. J. Nanjing Univ., Math. Biq. 10 (1993), 1-9.
MR 1248299 |
Zbl 0794.16001
[10] Fossum, R. M., Griffith, P. A., Reiten, I.:
Trivial Extensions of Abelian Categories: Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory. Lecture Notes in Mathematics 456. Springer, Berlin (1975).
DOI 10.1007/BFb0065404 |
MR 0389981 |
Zbl 0303.18006
[14] Holm, H.:
Gorenstein Homological Algebra: Ph. D. Thesis. University of Copenhagen, Copenhagen (2004).
MR 2038564
[24] Morita, K.:
Duality for modules and its applications to the theory of rings with minimum condition. Sci. Rep. Tokyo Kyoiku Diagaku Sect. A 6 (1958), 83-142.
MR 0096700 |
Zbl 0080.25702
[25] Nagata, M.:
Local Rings. Interscience Tracts in Pure and Applied Mathematics 13. John Wiley & Sons, New York (1962).
MR 0155856 |
Zbl 0123.03402
[27] Reiten, I.:
Trivial Extensions and Gorenstein Rings: Ph. D. Thesis. University of Illinois, Urbana (1971).
MR 2621542
[28] Rotman, J. J.:
An Introduction to Homological Algebra. Pure and Applied Mathematics 85. Academic Press, New York (1979).
MR 0538169 |
Zbl 0441.18018